Marielle Rekveld-Temminck
Anne-Marie Rodenburg
Herziene uitgave April 2015

VACCINATIE
EEN FASCINEREND ONDERWERP

Een homeopathische visie op ziekte en gezondheid
Voorwoord

Dit e-book is tot stand gekomen vanuit onze persoonlijke interesse in en ervaringen met vaccinaties. Wij hebben ons tot doel gesteld een overzichtelijk, door iedereen te lezen naslagwerk te creëren op basis waarvan eigenaren van hond, kat en/of paard een weloverwogen beslissing kunnen nemen hun dier wel of niet te laten vaccineren.

In 2012 hebben wij onze opleiding aan het Veterinair Homeopathie College Nederland met goed gevolg afgerond. De inhoud van de scriptie op basis waarvan wij zijn afgestudeerd vormt de basis voor dit e-book.

Anne-Marie Rodenburg en Marielle Rekveld-Temminck
Inleiding

Er bestaat behoorlijk veel controverse ten aanzien van de werkzaamheid en risico’s van vaccins. Wij hebben ons de volgende vragen gesteld m.b.t. dit onderwerp.

Staat het risico van vaccineren wel in relatie tot de eventuele op te lopen ziekte?
Biedt het vaccin wel de verwachte bescherming? Veel vaccins bieden ‘slechts’ een vermindering van de klinische symptomen; dit betekent dat een dier de ziekte wel kan oplopen, maar er minder ziek van zou worden, terwijl je als eigenaar misschien in de veronderstelling bent dat je dier beschermd is tegen deze ziekte.
Wat doet een vaccinatie naast de beloofde bescherming nog meer met het lichaam, wat zit er in aan hulpmiddelen en adjuvantia?
Hoe zit het met de geadviseerde herhalingsfrequenties? Waarom ben je bijvoorbeeld als mens voor 15 jaar beschermd tegen tetanus en zou je paard elke twee jaar voor deze ziekte moeten laten vaccineren?

Wij gaan in deze scriptie/e-book uitgebreid op deze vragen in, waarbij wij ons tot doel stellen eigenaren zo goed mogelijk te informeren, zodat zij een weloverwogen keuze kunnen maken wanneer de jaarlijkse oproep tot vaccineren weer in de bus valt. Want in Nederland bestaat een keuzevrijheid; zo heb je de keuze om je kinderen wel of niet te laten vaccineren en bij dieren die als huisdier gehouden worden is dat in feite precies zo. Tenzij je met je dier naar het buitenland wilt, dan is er de verplichting tot rabiësvaccinatie. En wil je met je paard, hond of kat deelnemen aan wedstrijden/shows of trainingen, dan kun je in de meeste gevallen niet om de verplichte vaccinaties heen.

In deel I van deze scriptie leggen we uit hoe het immuunsysteem werkt, omschrijven we alle ziektes waartegen gevaccineerd kan worden bij hond, kat en paard, leggen we uit wat vaccineren is en hoe het is ontstaan, geven we een overzicht van de op 01-11-2011 beschikbare vaccins met daarin opgenomen alle werkzame bestanddelen, adjuvantia en hulpmiddelen en is er een apart hoofdstuk waarin we alle gebruikte hulpmiddelen en adjuvantia op alfabetische volgorde kort bespreken.

In deel II van deze scriptie leggen we uit hoe wij als klassiek homeopaat aankijken tegen gezondheid, ziekte en genezing en hoe vaccinaties in deze zienswijze passen. Vervolgens gaan we in op het begrip vaccinosis en hoe dit homeopathisch te behandelen, bespreken we de materia medica van de drie belangrijkste middelen hierbij en behandelen we een zestal casussen waarbij sprake is van klachten na vaccinatie. Daarnaast geven we een overzicht van de uitkomsten van onze vragenlijst die we op het internet hebben gepubliceerd.

Om zo volledig mogelijk te zijn, noemen we kort de mogelijke alternatieven voor vaccinaties. We hebben bij het homeopathische deel getracht de homeopathische visie zo te omschrijven dat het ook voor niet-homeopaten begrijpelijk is.
Inhoudsopgave

FYSIOLOGIE ................................................................................................................................. 6
Pathogenen ........................................................................................................................................ 6
Het immuunsysteem ...................................................................................................................... 8
ZIEKTES .............................................................................................................................................. 12
Hondenziektjes ............................................................................................................................... 13
  Canine herpes virus .................................................................................................................. 13
  Coronavirus ................................................................................................................................. 15
  Hondenziekte ............................................................................................................................. 15
  Kennelhoest ................................................................................................................................ 16
  Leverziekte .................................................................................................................................. 17
  Parvo ............................................................................................................................................... 17
  Piroplasmose .............................................................................................................................. 18
  Rabies ............................................................................................................................................ 19
  Ziekte van Weil .......................................................................................................................... 21
Kattenziektjes ................................................................................................................................. 23
  Feline Immunodeficiëntie Virus ................................................................................................. 23
  Feline Infectieuze Peritonitis ..................................................................................................... 24
  Feline leukemie virus / infectieuze leukemie ............................................................................ 26
  Kattenziekte ................................................................................................................................ 27
  Niesziekte .................................................................................................................................... 27
Paardenziektjes ............................................................................................................................... 29
  Afrikaanse paardenpest ............................................................................................................. 29
  Droes .......................................................................................................................................... 31
  Huidsmeul ................................................................................................................................... 32
  Influenza ...................................................................................................................................... 33
  Rabies .......................................................................................................................................... 34
  Rhinopneumonie ......................................................................................................................... 34
  Tetanus ........................................................................................................................................ 36
  West-Nijl virus ............................................................................................................................ 37
VACCINEREN ..................................................................................................................................... 39
  De geschiedenis van vaccinatie ................................................................................................. 39
  Ontwikkeling en productie van een vaccin ............................................................................. 43
  Soorten vaccins en hun bijwerkingen ...................................................................................... 41
  Bescherming en werkzaamheid vaccinatie ............................................................................... 43
  Effectiviteit van vaccinatie ......................................................................................................... 45
  Alternatieven voor (over-)vaccinatie ......................................................................................... 46
VACCINS ALGEMEEN ........................................................................................................................ 48
  Vaccins honden, overzichtsschema per fabrikant: ................................................................. 49
  Vaccins honden, overzicht per ziekte ...................................................................................... 50
  Canine herpes virus .................................................................................................................. 50
  Coronavirus ................................................................................................................................. 50
  Hondenziekte ............................................................................................................................. 50
  Kennelhoest ............................................................................................................................... 51
  Leverziekte .................................................................................................................................. 52
  Piroplasmose .............................................................................................................................. 52
  Rabies .......................................................................................................................................... 53
  Ziekte van Weil .......................................................................................................................... 54
  Parvo .......................................................................................................................................... 57
  Combinatievaccins ...................................................................................................................... 59
    Hondenziektjes en Parvo ........................................................................................................... 59
    Hondenziekte, HCC, Parvo en kennelhoest (adenovirus type 2) ......................................... 59
    Hondenziekte, HCC, Parvo en Parainfluenza ........................................................................ 60
    Hondenziekte, HCC, Parvo, Ziekte van Weil en Parainfluenza ........................................... 61
    Hondenziekte, HCC, Parvo, Ziekte van Weil, Parainfluenza, Coronavirus ......................... 63
    Parvo en Ziekte van Weil ......................................................................................................... 64
FYSIOLOGIE

Pathogenen
Het immuunsysteem is een verdedigingssysteem en heeft als doel pathogenen (virussen, bacteriën, parasieten of veranderde lichaamseigen cellen zoals bijvoorbeeld kancercellen) te bestrijden. Het herkennen van deze pathogenen gebeurt aan de hand van uitsteeksels (eiwitten) die elke cel op zijn celwand heeft zitten, antigen genoemd. Elk pathogeen heeft zijn eigen specifieke antigene eigenschappen.

Antigenen zetten het lichaam bij binnenkomst aan tot vorming van antistoffen, ook wel antilichamen genoemd (daarover verderop meer).

Virus
Een virus is een celwand met daarin erfelijk materiaal (DNA of RNA) dat de eigenschappen van dat virus codeert. Een virus kan zichzelf zonder gastheerorganisme niet voortplanten terwijl een bacterie dat onder de juiste omstandigheden wel kan. Een virus kan zich zonder gastheerorganisme hooguit staande houden/in leven houden en kan daar soms ook heel hardnekkig in zijn, maar om zich daadwerkelijk te kunnen vermenigvuldigen hebben virussen de organellen van andere cellen nodig. Organellen kunnen gezien worden als de organen van een cel, die diverse celprocessen mogelijk maken. Dit betekent dat een virus moet infiltreren tot in de cel. In de gastheercel geeft het erfelijke materiaal van het virus de opdracht om nieuwe virussen te maken, dit leidt in veel gevallen tot de dood van de gastheercel.

Elk virus is gespecialiseerd in een bepaald type cel, het parvovirus is bijvoorbeeld gespecialiseerd in darmcellen, het HCC-virus in levercellen. Zou het virus in een andere cel terechtkomen dan gebeurt er doorgaans niets. De meeste virussen zijn daarnaast ook nog eens diersoort specifiek, van een virus van een hond wordt een kat of mens niet ziek. Al zijn er wel uitzonderingen zoals het influenza A-virus; daar zijn erdaar, varkens, kippen en mensen gevoelig voor. Er bestaat een theorie dat het jaarlijks veranderen van de griepeigenschappen van virus aanwezigheid van een virus in de gastheercel is het lastig te bestrijden, want daarvoor moet deze gastcel kapot worden gemaakt. Antibiotica (hierna vaak afgekort tot: AB) helpt daarmee niet bij virusinfecties want AB komt niet tot in de cel. Daarom heeft de beslissing van antibiotica bij een hond met bijvoorbeeld kennelhoest of griepeigenschappen van een bacteriële ontsteking vertoont (pus of groene uitvloeiing) geen zin. De enige reden dat er bij een virusinfectie vaak (preventief) antibiotica gegeven wordt, is dat er door de virusinfectie een bodem voor bacteriën aanwezig is; de kans op een bacteriële infectie is daardoor verhoogd.
Bij de meeste virusinfecties is er sprake van koorts; dit is een natuurlijke afweerreactie van het lichaam om ervoor te zorgen dat het virus zich minder snel vermeerderd. De hoge temperatuur remt namelijk de groei van het virus. Hoe beter de vitaliteit van de patiënt, hoe hoger de koorts en hoe beter de afweerreactie.

**Bacteriën en toxines**

Bacteriën zijn eencellige micro-organismen. Zij kunnen zich (onder de juiste omstandigheden) zelf vermenigvuldigen en zijn met antibiotica te bestrijden. Bacteriën zijn eigenlijk overal aanwezig en de meeste bacteriesoorten zijn niet schadelijk voor de gezondheid, sterker nog, veel bacteriën doen bijzonder nuttig werk (denk bijvoorbeeld aan de darmbacteriën, de zogenaamde lactobacillen e.d.) Bij de celstofwisseling van bacteriën kunnen gifstoffen of toxines ontstaan die schadelijk kunnen zijn (denk bijvoorbeeld aan tetanus).

Bacteriën kunnen aan de hand van hun uiterlijk worden ingedeeld in verschillende groepen.
A: staafvormig (bacillen);
B: bolvormig (coccen) in clusters (C) of in paren (D);
E: spiraalvormig (spirillen voorbeeld: leptospirose);
F: komaalvormig (kommabacillen bijvoorbeeld: cholera)

**Prionen**

Prionen zijn ziekteveroorzakende eiwitten, die infecties veroorzaken die niet gereguleerd worden door genetisch materiaal (ze bevatten geen DNA noch RNA) en verschillen daardoor van virussen en bacteriën. In 1982 werd de zenuwziekte scrapie bij schapen ontdekt. De hersenen van de door deze ziekte gestorven schapen bleken infectieus voor gezonde dieren. Biochemicus Stanley Prusiner ontdekte in 1982 dat een "Proteinaceous Infectious Particle" aan de basis lag voor deze ziekte en gaf er de naam Prion aan.

Het PrP-gen bepaalt de aanmaak en eigenschappen van normaal voorkomend Prion-eiwit (Prion Protein, ook wel afgekort tot PrP). Prioneiwitten liggen op de celmembranen. Waarschijnlijk spelen ze een rol bij de moleculaire signalen die cellen aan elkaar geven, maar hun exacte fysiologische functie is tot op heden onbekend.

Bij prionziektes verandert cellulair Prioneiwit (PrPc, de c staat voor cellular) van vorm en wordt een abnormaal eiwitmolecuul, ook wel afgekort tot PrPsc (de sc staat voor scrapie). Dit nieuw gevormde PrPsc prion verandert andere, nabij gelegen PrPc in PrPsc. Deze PrPsc is resistent tegen proteasen (eiwitsplitsende enzymen), ongrijpbaar voor het immuunsysteem en stapelt zich. Wanneer er een bepaald aantal PrPsc prionen is gevormd, ontstaat er ziekte. PrPsc prionen veranderen nooit terug in PrPc.

PrPc komt in alle cellen van het lichaam voor, met een hoge concentratie in de hersenen. De pathogene PrPsc prionen veroorzaken kleine blaasjes in de hersencellen. Geleidelijk sterven de aangetaste cellen af en er vallen steeds meer gaten in de hersenen, vandaar dat er ook wel gesproken wordt van spongiforme aandoeningen.

Naast scrapie is BSE, Bovine Spongiforme Encephalopathie, ook wel de gekke koeienziekte genoemd, een andere bekende prionziekte.

Prionziektes kunnen erfelijk bepaald zijn; er is dan sprake van een genetisch bepaalde gevoeligheid voor prionziektes of van een mutatie in het prion-gen, maar deze ziektes kunnen ook overdraagbaar
Prion-resistentie
Tot voor kort was het onbekend waarom paarden, honden en konijnen niet getroffen worden door prionziektes. Jiapu Zhang, een Australisch onderzoeker, heeft een groot aantal computersimulaties van de vorm van prioneiwitten gemaakt. Zhang bestudeerde in zijn model hoe deze eiwitten van vorm veranderen als de temperatuur en de pH veranderen en ontdekte dat deze dieren prion-resistente PrPc eiwitten hebben die stabiel zijn dan die in bijvoorbeeld koe of schaap. Zijn conclusie is dat een zoutbrug tussen twee delen van het PrPc-eiwit het eiwit stabiel maakt, hetgeen voorkomt dat het zich in een infectieuze vorm kan buigen. Met dit gegeven kan er mogelijk een therapie beschikbaar komen.

Hoewel paarden en honden dus niet gevoelig zijn voor prionziektes, zijn katachtigen dit wel; zij kunnen Feline Spongiform Encephalopathy (FSE) ontwikkelen, eenziekte die zowel klinisch als histopathologisch lijkt op de Bovine Spongiform Encephalopathy (BSE). De belangrijkste klinische kenmerken zijn: progressief verlopende neurologische verschijnselen, bewegingsstoornissen en abnormaal gedrag. Histopathologisch wordt de aandoening vooral gekenmerkt door degeneratieve veranderingen van het centrale zenuwstelsel gepaard gaande met holtevorming, een beeld dat lijkt op dat van BSE en andere spongiforme encephalopathieën.

Er is op dit moment geen remedie tegen prionziektes, maar er wordt wel onderzoek naar gedaan. Onder andere wordt onderzocht of er een vaccin te maken is die bescherming biedt tegen deze ziektes. Vandaar dat we de prionen naast bacteriën, virussen en toxines in deze scriptie willen vermelden.

Het immuunsysteem
Het immuunsysteem is op te splitsen in 2 delen: de aspecifieke afweer en de specifieke afweer.

Aspecifieke afweer
Ook wel aangeboren afweer genoemd. Dit deel werkt snel en reageert bij een infectie als eerste, maar werkt niet specifiek tegen een bepaalde ziekteverwekker (pathogeen).
Macrofagen (een soort witte bloedcel) in het bloed eten in principe alles wat lichaamsvreemd is op (fagocytose). De ziekteverwekker wordt in de macrofaag verteerd waarna hij het antigen van de ziekteverwekker verplaatst naar receptoren op zijn eigen celwand. Daarnaast produceert de macrofaag een hormoonachtige stof, interleukine 1. Deze stof activeert de T-helpercellen die de macrofaag opzoeken en zijn informatie overnemen en de specifieke afweer in werking zetten.

Specifieke afweer
Dit systeem maakt antistoffen, antilichamen genoemd, aan tegen specifieke antigenen en 'onthoudt'/bewaart die antigenen. Eenmaal in contact geweest met een specifiek antigen zal het bij een volgende invasie de antilichamen al klaar hebben staan. De specifieke afweer is afhankelijk van de aspecifieke afweer alvorens in actie te komen.
Het specifieke afweersysteem bestaat uit 2 soorten cellen: B-cellen (humorale afweer) en T-cellen (cellulaire afweer).

Humorale afweer - humor betekent vloeistof - heeft deze naam omdat het zich in het bloed bevindt. De humorale afweer maakt antilichamen aan. Antilichamen zijn eiwitten en worden via het bloed door het hele lichaam verspreid waardoor de afweer ook overal in het lichaam aanwezig is.
Cellulaire/cell gebonden afweer, zorgt ervoor dat de cellen waarin zich antigenen bevinden kapot gemaakt worden, het gaat hier dus om cellen die virussen of tumorcellen bevatten (deze hebben ook afwijkende antigenen).
**Specifieke afweer: B-cellen**
B-cellen (humorale afweer) heten zo omdat ze in het beenmerg gemaakt worden. Bijna alle bloedcellen worden in het beenmerg gemaakt, zo ook de B-cellen. Ze gaan na aanmaak in het bloed circuleren en heten dan nog naïeve B-cellen totdat hen door een T-helpercel een antigen wordt aangeboden. Op dat moment gaan de naïeve B-cellen hiertegen antilichamen produceren en verandern ze van uiterlijk; het worden dan plasmacellen. Plasmacellen zijn cellen die alleen maar antilichamen maken tegen een specifiek antigen. Behalve de antilichaam-producerende cellen worden er ook **geheugencellen** gemaakt. Er worden dus 2 soorten B-cellen gemaakt: **plasma cellen** en **geheugencellen**.

Geheugencellen blijven heel lang in leven. Normaal gesproken worden alle cellen in een lichaam, behalve de neurologische cellen, van tijd tot tijd vervangen (in een periode van ongeveer 7 weken zijn alle cellen een keer vervangen). Alleen de geheugencellen blijven heel lang bestaan. Bij mensen wordt dat op zo’n 12 tot 15 jaar geschat.

Geheugencellen zijn niet terug te vinden of te tellen, ze zijn niet te herkennen aan hun uiterlijk en zien er uit als B-cellen. Het is dus nooit met zekerheid te zeggen of ze aanwezig zijn en/of waar ze zitten. Het is ook niet bekend of ze altijd in het bloed circuleren of dat ze in het beenmerg of de milt verblijven.

B-cellen werken voornamelijk tegen virussen en bacteriën die zich (nog) niet in een cel bevinden (qua virussen dan); antilichamen kunnen niet in de cel komen. Dus virussen en bacteriën die zich in het bloed bevinden, worden door de antilichamen aangepakt. Deze antilichamen blijven heel lang in het bloed circuleren en zijn meetbaar.

**Specifieke afweer: T-cellen**
T-cellen (cellulaire afweer) worden net als de B-cellen in het beenmerg aangemaakt, maar ontwikkelen zich verder in de thymus. De thymus zit in de borstholte en is vooral bij jonge dieren heel groot en belangrijk, bij volwassen dieren (en mensen) verdwijnt hij zo goed als geheel. Bij de ontwikkeling van de T-cellen in de thymus ontstaan miljoenen verschillende cellen, deze hebben allemaal een andere receptor op hun celwand waarmee ze de geïnfecteerde lichaamseigen cellen kunnen herkennen. Om eigen cellen te kunnen onderscheiden van vreemde cellen zijn vrijwel alle lichaamscellen voorzien van een complex van eiwitten (MHC) en dit verschilt per individu. Hierdoor zijn de T-cellen in staat eigen cellen te onderscheiden van lichaamsvreemde cellen. Verder kan dit eiwitcomplex (MHC) aangeven dat een cel geïnfecteerd is door een deel van het virus als lichaamsvreemd antigen op zijn celwand te presenteren zodat de T-cellen dit aan de buitenkant kunnen herkennen.

Er zijn verschillende soorten T-cellen:
- **T-helpercellen**, zij zijn belangrijk voor het op gang brengen van de immuunreactie.
- **T-killer cellen**, dit zijn cellen die daadwerkelijk andere cellen aanvallen (cellen geïnfecteerd met virussen en tumorcellen).

**Werking T-killer cellen:**

**Werking T-helper cellen** (algemeen):
Een virus wordt gefagocyteerd. De macrofaag brengt een virusdeeltje (antigen) naar het oppervlak. Een T-cel receptor van de T-helpercel, hecht zich aan dit antigen. Ook hier geldt dat er voor elk antigen weer een andere T-helpercel is. De macrofaag stuit bepaalde cytokinen (signaalstof

Er zijn 2 soorten T-helpercellen:
**Th1**-cellen spelen een belangrijke rol bij het activeren van macrofagen en de productie van B-geheugencellen. De immuunrespons door Th1-cellen wordt cellulaire afweer genoemd.

**Th2**-cellen zijn direct verantwoordelijk voor het differentiëren van naïeve B-cellen in plasmacellen die antilichamen uitscheiden en zijn essentieel voor de productie van IgE. Een teveel aan vrijkomend IgE maakt deel uit van een allergische reactie. De immuunrespons door Th2-cellen wordt humorale afweer genoemd.

Het lichaam kan Th1 en Th2 cellen niet tegelijkertijd aanmaken. Het lichaam moet kiezen of het Th1 of Th2 cellen gaat aanmaken.

Op het moment dat een dier gevaccineerd wordt, worden in eerste instantie met name de naïeve B-cellen gestimuleerd om antilichamen (immuunglobulines) te maken. Dat heeft tot gevolg dat de productie van Th1 cellen even helemaal stil ligt; de T-cel immuniteit is tijdelijk onderdrukt en daarom is er vlak na een vaccinatie meer kans op bacteriële infecies, tumorgroei en andere virusinfecties dan die waartegen gevaccineerd wordt. Bijvoorbeeld honden die meteen na een vaccinatie een kennelhoest infectie of een diarreevirus oplopen. Dat is puur omdat het immuunsysteem met andere dingen bezig is en niet op die andere virussen kan reageren.

**Soorten antilichamen**
Antilichamen, ook wel immuunglobulines (afgekort Ig) of antistoffen genoemd zijn eiwitten die in het bloed rondzwerven en antigenen moeten herkennen. Er zijn meerdere soorten antilichamen maar we behandelen hier alleen diegene die voor vaccinaties van belang zijn. Immuunglobuline zegt eigenlijk niets meer dan dat dit een eiwit van het immuunsysteem is. De A, M en G zijn een alfabetische nummering die ze hebben gekregen op volgorde van ontdekking.

**IgE**
Geven de aanzet tot onmiddellijke allergische reacties. IgE bindt aan basofielen (een type witte bloedcel) in het bloed en aan mestcellen in weefsels. Wanneer basofielen of mestcellen met daaraan gebonden IgE allergenen tegenkomen (antigenen die allergische reacties veroorzaken), geven ze stoffen af (o.a. histamine) die ontsteking veroorzaken en omliggende weefsels beschadigen.

**IgA**
IgA zit voornamelijk in de slijmvliezen. Slijmvliezen zijn de plek waar virussen als eerste binnenkomen. IgA is dus een heel belangrijk antilichaam omdat deze het virus aansluit op het moment dat het in contact komt met de slijmvliezen, dus voordat het echte lichaam is binnen gedrongen. IgA wordt opgewekt bij vaccinaties die werken op het slijmvlies zoals neusvaccinaties. Dat is de reden dat een neusvaccinatie beter werkt dan de subcutane (onderhuids) vaccinatie en minder bijwerkingen geeft omdat het niet via een injectie in de huid en dus niet direct in het bloed komt.

**IgM**
IgM wordt bij elke eerste contact met een virus (dus ook bij de eerste vaccinatie) aangemaakt. Het ontstaat heel snel maar verdwijnt na verloop van tijd ook weer om vervangen te worden door IgG. IgM is de eerste snelle afweer tegen virussen. Sommige vaccinaties (de dode vaccins) moeten herhaald worden in de tijd dat de IgM nog hoog is. IgM kan gebruikt worden om een ziekte te diagnosticeren zoals bijvoorbeeld Parvo. Wanneer bij een hond met heftige diarree en hoge koorts getwijfeld wordt of het Parvo of hondenziekte betreft, dan kan met behulp van IgM aangetoond worden wat de ziekteverwekker is.
IgG
IgG wordt later aangemaakt, nadat de acute infectie voorbij is, en zorgt voor de bescherming op de lange termijn, deze blijven langer in het bloed aanwezig. De aanmaak komt trager op gang; na een tweede infectie (booster vaccinatie) neemt het aantal IgG toe. De maternale immuniteit (pups, kittens en veulens krijgen dit mee via de eerste moedermelk) betreft IgG, deze maternale IgG neemt na de geboorte af.
ZIEKTES
In dit hoofdstuk geven wij een overzicht van de ziektes waarvoor gevaccineerd kan worden. Wij hebben de ziektes gerangschikt per diersoort op alfabetische volgorde. Wij hebben hierbij de in Nederland meest gangbare benamingen aangehouden.
De beschrijving van de ziekte heeft een standaard opbouw:
- Algemeen: oorzaak en indien bekend de herkomst, werkingsgebied en voorkomen van het desbetreffende pathogen.
- Besmetting: wijze van besmetting/overbrenging van de ziekte.
- Incubatietijd.
- Ziektebeeld: de symptomen die de ziekte kan veroorzaken.
- Diagnose: omschrijft op welke wijze(n) de ziekte door de dierenarts kan worden vastgesteld.
- Therapie (regulier): omschrijft de standaard behandelwijze bij de dierenarts.
- Prognose: omschrijft de genezings- en overlevingskansen van een dier dat de betreffende ziekte heeft opgelopen.
Wij hebben getracht om de juiste gegevens te vinden over de morbiditeit en mortaliteit van alle ziektes, maar heel vaak konden we daar geen eenduidig antwoord op vinden; die cijfers lopen nogal uiteen.

Hondenziektes

1. Hersenen: hondenziekte, hondsdolheid
2. Oog: infectieuze leverziekte
3. Neus
4. Mond/Keel
5. Luchtpijp: kennelhoest
6. Slokdarm
7. Hart: parvo
8. Longen: hondenziekte
9. Lever: infectieuze leverziekte, ziekte van Weil
10. Nieren: ziekte van Weil
11. Darmen: parvo, hondenziekte, ziekte van Weil, herpesvirus
12. Baarmoeder: herpesvirus
13. Blaas

Bron: Merial.nl

Canine herpes virus
Is een wereldwijd voorkomend virus dat verantwoordelijk wordt gehouden voor het leegblijven van teven na de dekking, kleine nesten en pupsterfte, zowel doodgeboren als sterfte kort na de geboorte. Er wordt vermoed dat rond de 50% van de honden in kennels besmet zijn. Het virus voelt zich het beste bij een temperatuur van 34-35 °C, wat verklaart waarom juist de slijmvliezen van neus, oog, mond en uitwendige geslachtsorganen de primaire plaatsen van infectie en vermenigvuldiging zijn. Bij temperaturen van 40 °C of hoger is het virus instabiel.

Besmetting
Overdracht van het virus vindt plaats door direct contact (tijdens de geboorte, contact met geïnfecteerde nestgenoten, neuscontact met de teef, tijdens de dekking (bij proefdekkingen is via deze manier nog nooit een besmetting tot stand gekomen en is dus voornamelijk theoretisch). In de buitenlucht kan het virus slecht overleven en is erg gevoelig voor de meeste ontsmettingsmiddelen.
Eenmaal besmet kan een dier zijn leven lang, latent, drager blijven. Het dier heeft geen symptomen maar kan bij stress of immunsuppressie (o.a. loopsheid, andere virale aandoeningen,
immunosuppressieve medicatie) een heropleving van het virus krijgen gepaard gaande met excretie. Niet alle geïnfecteerde dieren worden drager.

**Incubatietijd**
6-10 dagen.

**Ziektebeeld**
De meeste volwassen dieren worden niet ziek van het CHV en vertonen geen duidelijke ziekteverschijnselen; men spreekt dan van een subklinische infectie.
Er moet wat betreft het ziektebeeld onderscheid gemaakt worden tussen pups tot 3 weken, pups ouder dan 3 weken, volwassen teven en volwassen reuen.

*Volwassen reuen* hebben na besmetting in de regel weinig ziektesymptomen. Er kan sprake zijn van een geringe luchtweginfectie met lichte neusuitvloeiing eventueel in combinatie met een geringe ooguitvloeiing. Op de penis kunnen er kleine beschadigingen (blaasjes en bloedinkjes in het slijmvlies) waar te nemen zijn net als een eventuele uitvloeiing uit de voorhuid.

Bij *niet gedekte teven* zijn de symptomen, net als bij de volwassen reuen: geringe luchtweginfectie met een eventuele geringe oogontsteking. Verder kan er bij teven sprake zijn van een geringe vaginitis en beschadigingen aan de vulva.

Bij de *gedekte teef* kan er behalve de bovenstaande symptomen ook sprake zijn van: resorptie van de vruchten, mummificatie van de vruchten, abortus, vroeggeboortedooden en levend geboren maar zeer zwakke pups. Bij niet gedekte teven zijn de symptomen, net als bij de volwassen reuen: geringe luchtweginfectie met een eventuele geringe oogontsteking. Verder kan er bij teven sprake zijn van een geringe vaginitis en beschadigingen aan de vulva.

Bij *pups* tot ongeveer 3 weken oud kunnen de symptomen verlopen van een ogenschijnlijk gezond tot een doodzieke pup. De zieke pups hebben weinig symptomen die duiden op een CHV-infectie; ze zijn slegel, hebben weinig eetlust, de lichaamstemperatuur blijft normaal, ze krijgen een pijnlijke gespannen buik, gaan sneller ademhalen, gaan gillen en kunnen bloedingen op de slijmvliezen krijgen. De dood kan bij deze pups meer snel optreden, omdat het virus zich snel vermeerdert en de organen aantast. De reden dat deze jonge pups zo gevoelig zijn voor het virus komt omdat ze nog niet goed in staat zijn hun lichaamstemperatuur stabiel op 38-39°C te houden. En verder is hun immuunsysteem nog niet voldoende ontwikkeld om een infectie te reageren.

Bij pups die besmet worden op een leeftijd van *meer dan 3 weken oud* is soms het enige symptoom niezen met geringe neusuitvloeiing.

**Diagnose**
D.m.v. sectie is bij dode pups snel vast te stellen of er sprake was van een infectie met CHV: in bijna alle organen treden bloedingen op. In de nieren zijn deze beschadigingen het duidelijkst. Via bloedonderzoek (antistoffentiter) kan aangetoond worden of een dier een infectie (doorgemaakt) heeft.

**Therapie (regulier)**
Als er CHV in een nest wordt vermoed is het zaak de zieke van de gezonde pups te scheiden en de omgevingstemperatuur te verhogen. De eerste 4 dagen naar 30-32 °C en daarna dalend tot 28 °C tegen de zevende dag. Door de hoge temperatuur zal het virus meer moeite hebben om zich te vermeerderen. De behandeling van de zieke pup(s) is vaak niet erg effectief en bestaat uit symptomatiche behandeling met behulp van vocht en AB. Verder kan er eventueel een hyperimmuun serum (bevat grote hoeveelheden antistoffen) intraperitoneaal (binnen het buikvlies) worden toegediend. Door de snelle progressie van de aandoening bij de pasgeboren pups is het effect van deze behandeling echter beperkt.

**Prognose**
Pups jonger dan 8 dagen zullen vrijwel allemaal sterven, vaak zelfs voordat er ziekteverschijnselen optreden. Bij oudere pups is de sterfte veel lager (+ 25%), maar kunnen er andere klachten optreden die zelfs van blijvende aard kunnen zijn, zoals klachten aan het zenuwstelsel (o.a. scheve koppen, tremoren en tics), maar ook nieren en ogen kunnen permanent schade oplopen.
**Coronavirus**
Coronavirussen zijn veroorzakers van maagdarmklachten bij honden (en andere diersoorten). Dr. R.D. Schultz, verbonden aan de “School of Veterinary Medicine”, Wisconsin, USA, zou volgens dr. Patricia Jorden in haar boek “Mark of the beast” beweerd hebben dat een coronavirus eerst nog moet leren hoe het ziekte bij honden moet veroorzaken. M.a.w. het virus is amper pathogen.

**Besmetting**
Besmetting vindt plaats via de bek en wordt uitgescheiden via de ontsnelling. Het slachtoffer moet dus besmette ontsnelling hebben gegeten, eraan gelikt of geroken hebben. Het virus kan makkelijk vernietigd worden door de meeste ontsmettingsmiddelen.

**Incubatietijd**
1-3 dagen.

**Ziektebeeld**
Niet willen eten en drinken, dunne ontsnelling tot bloederige diarrée (al komt dit laatste zelden voor), braken, sloomheid, bleke slijmvliezen, zwakte en een pijnlijke buik. Vaak is er sprake van een verhoogde temperatuur. De klachten kunnen tussen de 3 en 20 dagen aanhouden. Een darmontsteking veroorzaakt door het coronavirus verloopt veel milder dan bij het parvovirus.

**Diagnose**
Aan de hand van het klinische beeld wordt een (waarschijnlijke) diagnose gesteld. Maagdarmklachten kunnen verschillende oorzaken hebben en heel vaak wordt de exacte diagnose niet gesteld omdat de meeste patiënten binnen korte tijd weer vanzelf opknappen. Het virus kan worden aangetoond in de ontsnelling.

**Therapie (regulier)**
Bij ernstige uitdroging is vochttoediening via infuus nodig. Maar vaak volstaat een behandeling met speciaal dieetvoer, middelen die de darmwand beschermen, giftige stoffen wegvangen en een middel tegen de misselijkheid zodat de patiënt blijft eten.

**Prognose**
Wanneer er snel wordt behandeld (dus voordat een dier uitgedroogd raakt) is de prognose erg goed en herstelt de patiënt volledig.

---

**Hondenziekte (Canine Distemper of ziekte van Carré)**
Wordt veroorzaakt door het paramyxovirus en is sterk verwant aan de mazelen en het runderpestvirus. Het is een erg besmettelijke ziekte die wereldwijd voorkomt bij hond, vos, fret en nerts. Deze ziekte komt in Nederland niet veel (meer) voor.

**Besmetting**
Het virus is zo klein dat het als zeer kleine druppeltjes (aerosolen) lang in de lucht blijft hangen. Buiten het lichaam wordt het virus erg snel inactief, wat inhoudt dat het zich voornamelijk verspreidt door direct contact. Sommige geïnfecteerde dieren kunnen het virus meerdere maanden uitscheiden. Het virus vermeerderd zich in eerste instantie voornamelijk in de lymfe van het respiratiesysteem.

**Incubatietijd**
3-15 dagen.

**Ziektebeeld**
Aard en ernst van de klachten zijn variabel en verschillen per dier. De eerste symptomen zijn koorts en lichte ontsteking van de voorste luchtwegen, al dan niet gepaard gaand met vermagering. De ontsteking van de luchtwegen zet de deur open voor secundaire bacteriële infecties waardoor de ontstekingen verergeren. Dit kan uiteindelijk uitmonden in een (fatale) longontsteking. Daarnaast kan er sprake zijn van braken en diarrée en in ernstige gevallen algeheel orgaanfalen.
Ook kan er een acute hersenvliesontsteking optreden. In sommige gevallen treedt er een huidaandoening op, de zogenaamde ‘hardpad disease’ wat inhoudt dat voetzolen en neus sterk verhoornen, dit wordt vaak gezien in combinatie met neurologische klachten: onwillekeurige samentrekking van spieren, paralyse (meestal de achterpoten), convulsies met kwijlen en meestal kauwbewegingen van de kaak (alsof de hond kauwgom aan het eten is). Deze aanvallen komen steeds heftiger en frequenter voor wat uiteindelijk in een soort van epileptische aanval kan uitmonden. Een geïnfecteerde hond kan alle bovenstaande symptomen laten zien of slechts één of enkele hiervan. De neurologische verschijnselen kunnen soms pas maanden later optreden.

**Diagnose**
Aan de hand van de klinische symptomen en bloedonderzoek.

**Therapie (regulier)**
De behandeling is gericht op het voorkomen/ beheersen van secundaire bacteriële infecties d.m.v. AB en NSAID’s alsmede het op peil houden van de vochtbalans. Afhankelijk van de soort klachten wordt de behandeling ondersteund met supplementen om voedingstekorten te voorkomen en worden neurologische verschijnselen bewaakt. Er is geen standaard behandeling.

**Prognose**
De mortaliteit is erg hoog (ongeveer 30-50% van de ziek geworden dieren sterft) en degene die herstellen houden er vaak neurologische verschijnselen aan over (onwillekeurig trekken van ledematen of andere tics).

### Kennelhoest
Kennelhoest is een verzamelnaam voor infecties van de voorste luchtwegen van de hond en wordt veroorzaakt door verschillende en wisselende virus en een bacterie (het adenovirus, waarvan vooral 'type 2', herpesvirus en het parainfluenzavirus de belangrijkste zijn en de bacterie Bordetella bronchiseptica). Het is over het algemeen een mild verlopende ziekte maar kan zich ontwikkelen tot chronische bronchitis of longontsteking.

**Besmetting**
Besmetting vindt plaats via de lucht.

**Incubatietijd**
5-10 dagen.

**Ziektebeeld**
De verschijnselen bestaan meestal uit een droge harde hoest, soms is de hoest echter nat en is er ook sprake van neusuitvloeiing. Door de keelpijn eten de dieren soms slecht. Omdat ze door het hoesten soms kokhalzen lijkt het wel eens of ze ook braken. Ze geven dan wat wit schuim op.

**Diagnose**
De typische kennelhoest-hoest kan makkelijk worden opgewekt door lichte druk uit te oefenen op de luchtpijp.

**Therapie (regulier)**
Bij droge hoest wordt vaak een hoestdrank ingezet met codeïne. Bij zwaardere infecties en complicaties wordt er meestal AB gebruikt.

**Prognose**
Heel goed; de meeste dieren herstellen onbehandeld binnen 7 à 10 dagen, maar blijven wel tot een dag of 20 besmettelijk.
Leverziekte (HCC = Hepatitis Contagiosa Canis)
Ook wel besmettelijke leverziekte genoemd, veroorzaakt hepatitis (leverontsteking). In dit geval wordt
de leverontsteking veroorzaakt door het CAV-1 virus (Canine Adeno Virus-1). Behalve honden kunnen
vossen, wolven en coyotes er ook ziek door worden. De ziekte komt niet veel (meer) voor.

Besmetting
Het virus wordt voornamelijk via de urine uitgescheiden en kan dan door snuffelen en oplikken bij een
andere hond/vos terecht komen, dus via de mond/neusslijmvlies.

Incubatietijd
4-9 dagen.

Ziektebeeld
De symptomen zijn variabel: van lichte koorts tot een ernstige leverontsteking met hoge koorts. De
dieren kunnen veel gaan drinken en meer gaan plassen, hebben vaak een vermindere eetlust en
kunnen naast braken soms ook nog last van diarree krijgen. Verder kan er sprake zijn van geelzucht (geel worden van slijmvlies en oogwit), buik gevuld met vocht, blind lijken ('wolk' ogen) en vertoning van afwijkend gedrag.

Diagnose
De symptomen van HCC kunnen veel gelijkenis vertonen met de symptomen bij hondenziekte en is
darom niet vanwege de klinische symptomen alleen aan te tonen. Bloedonderzoek moet uitsluitend
geven.

Therapie (regulier)
Bij ernstig zieke honden is soms bloedtransfusie nodig. Verder een breedspetrum AB en
vochttoediening met dextrose via een infuus.

Prognose
Jonge dieren kunnen plotseling sterven, maar als het dier de eerste 48 uur overleeft dan is er een
goede kans op herstel. Het dier kan na herstel nog tot maximaal 6 maanden lang het virus in zijn
urine afscheiden.

Parvo (Canine Parvo Virus: CPV)
Het honden parvovirus lijkt voor een groot gedeelte op het kattenziektevirus en is voor het eerst
ontdekt in 1978. Aangenomen wordt dat het CPV een mutatie van het kattenziektevirus is. Catherine
O’Driscoll suggereert in haar boek “What vets don’t tell you about vaccins” zelfs dat het ontstaan van
parvo samenhangt met de ontwikkeling van het kattenziektevaccin. Parvo kwam helemaal niet voor
voordat er tegen kattenziekte werd gevaccineerd.

Besmetting
Bron van besmetting is ontsluindering van geïnfecteerde honden. Besmetting vindt plaats door direct
(snuffelen, likken) en indirect contact (bijvoorbeeld kleding en schoeisel).

De hond krijgt het virus via de neus en mondslijmvlies binnen waarna het virus zich verspreidt via
de slokdarm naar het maagslijmvlies en van daaruit naar het darmslimvlies. Daarnaast nestelt het
virus zich bij jonge honden in de thymus.

Het CPV is een erg stabiel en sterk virus en na uitscheiding via de ontsluindering bestand tegen warmte,
schoonmaakmiddelen en alcohol. Het kan bij kamertemperatuur wel 3 maanden overleven.

Incubatietijd
7-10 dagen.
Ziektebeeld
De eerste symptomen zijn lusteloosheid en niet willen eten (misselijk). Daarna begint de hond met braken, wat ernstige vormen kan aannemen (veel en veelvuldig braken, niets kunnen binnenhouden, bloed bij braaksel). In dit stadium wordt er ook nog wel eens gedacht aan een obstrucie door een vreemd voorwerp in de maag/darm.
Binnen 24 uur krijgt de hond ook last van diarree. Deze kan variëren, maar het is meestal overvloedige waterige, bloederige diarree die vreselijk stinkt (weeïg). De diarree wordt veroorzaakt doordat het virus het darmslijmvlies kapot maakt, waardoor er geen voedingstoffen en vocht meer kunnen worden opgenomen, wat uitdroging tot gevolg heeft. De ernst van de aantasting van het darmslijmvlies is afhankelijk van de snelheid waarmee de cellen zich delen op het moment van de infectie (leeftijdsafhankelijk). De temperatuur kan variëren, van koorts tot ondertemperatuur. CPV wordt het meest gezien bij jonge honden (tot een jaar oud). Bij jonge pups tot 5 maanden is de besmetting vaak het meest ernstig en het moeilijkst te behandelen.

Diagnose
Aan de hand van het klinische beeld alleen is CPV niet onomstotelijk vast te stellen omdat er meerdere oorzaken van braken en diarree kunnen zijn. Met behulp van een parvo test-kit (ELISA) kan het CPV in de ontlasting worden aangetoond of door detectie van antistoffen in het bloed. Een bijkomende diagnose is vaak een te laag gehalte in witte bloedcellen (leucopenie). Het ontbreken van leucopenie is niet meteen een contra-indicatie.

Therapie (regulier)
Eenmaal geïnfecteerd is het virus niet te bestrijden/doden en moet er op beeld worden behandeld. In de meeste gevallen veroorzaakt CPV een groot verlies aan darmcellen wat resulteert in ernstige dehydratie, elektrolytenverlies (natrium en kalium) en onbalans en sepsis. Hiervoor worden intraveneus vocht en elektrolyten toegediend en antibiotica en ontstekingsremmers om sepsis te voorkomen of onder controle te houden. Daarnaast wordt er meestal ook nog anti-braak en anti-diarree medicatie ingezet.

Prognose
De overlevingskans is volgens de bronnen op internet (sites van verschillende dierenartsenpraktijken en Merck) niet erg hoog alhoewel Catherine O'Driscoll in haar boek “Wath Vets Don't Tell You About Vaccines” beweert dat 'slechts' 10% van de geïnfecteerde honden ouder dan 8 weken overlijdt (blz. 130). Opvallend is dat sommige rassen, vooral de Doberman en Rottweiler, een lagere overlevingskans schijnen te hebben dan andere rassen.

Piroplasmose (Babesiosis of tekenkoorts)

Besmetting
Een hond kan besmet raken door een tekenbeet wanneer deze teek zich eerder heeft volgezogen met bloed van een besmet dier. Het duurt 24-48 uur voordat de babesia's besmettelijk worden. Daarom moeten de teken snel verwijderd worden.
Incubatietijd
1-3 weken, ten hoogste 6 weken.

Ziektebeeld
Babesia canis ontwikkelt zich alleen maar in de rode bloedcellen.
Er zijn 2 vormen van babesiosis.

1. De acute vorm:

2. De chronische vorm:
De parasieten kunnen zich ergens in de lever of milt verborgen houden. Het kan soms wel maanden duren voordat een hond een aanval krijgt die aan babesiosis doet denken. Bij de chronische vorm zijn de symptomen veel vager. De hond is snel moe, gaat vaak liggen, heeft een slechte eetlust en donkere, slijmerige diarreeachtige ontlasting. De lever en milt zijn ook gezwollen. In de loop van de tijd wordt de hond gedoemd te overleven. De behandeling is hetzelfde als bij de acute aanval, eventueel aangevuld met bloedtransfusie en de toediening van allerlei versterkende middelen. De eetlust komt maar langzaam op gang. En er kunnen zich nog allerlei lever- en niercomplicaties voordoen.

Diagnose
Aan de hand van het verhaal (last van teken, buitenland geweest), lichamelijk onderzoek (zie symptomen) en bloedonderzoek. De parasieten zijn met een speciale test zichtbaar te maken in de rode bloedcellen.

Therapie (regulier)
De behandeling bestaat uit 2 injecties Imidocarb® met een tussentijd van zo'n 10 dagen. Dit geneesmiddel is bij de meeste dierenartsen niet standaard op voorraad.

Prognose
Indien de behandeling op tijd gestart wordt is de overlevingskans hoog. Al blijven honden die deze ziekte overleefd hebben wel de infectie bij zich dragen (maanden tot zelfs wel jaren) maar zijn daarna (gedeeltelijk) immuun voor deze ziekte.

Rabiës
Rabiës of hondsdolheid, en ook wel lyssa genoemd, is een zoöonose die veroorzaakt wordt door het rabiësvirus. Alle zoogdieren kunnen in principe door dit virus worden aangetast maar niet alle dieren vertonen dezelfde ziekteverschijnselen of worden er ziek van. Het virus tast het centraal zenuwstelsel aan. Zijn er eenmaal symptomen zichtbaar dan is de afloop volgens de verschillende geraadpleegde literatuur vrijwel altijd dodelijk. In Nederland komt er, behalve bij de vleermuizensoort, geen rabiës voor. Drager en overbrenger van het rabiësvirus is in Europa meestal de vos. Anders dan in de ons omringende landen, geldt er voor Nederlandse honden geen vaccinatieplicht voor rabiës.

Besmetting
Besmetting vindt plaats via speeksel van een besmet dier. Het speeksel kan via een beet of via kleine wondjes of minimale huidaansjes (kloofjes) in onderhuids weefsel of in de spieren terechtkomen. De
overdrachtskans bij een beet door een rabide hond of vos is 20%.
Het virus verplaatst zich van de plaats waar het is binnengekomen via de perifere zenuwen naar het ruggenmerg en de hersenen, waar het zich vermeerdert. Vervolgens beweegt het virus zich langs de perifere zenuwen naar de speekselklieren.
Verspreiding via het bloed komt niet voor.

**Incubatiertijd**
De incubatiertijd is zowel langdurig als variabel. Opvallend is dat het virus zich na besmetting niet meteen gaat verspreiden, maar zich enige tijd beperkt tot de plaats van infectie/beet, wat mogelijkheden biedt voor behandeling. Meestal ontwikkelt de ziekte zich binnen 20-80 dagen na infectie, al kan de incubatiertijd ook korter duren of aanzienlijk langer zijn. Humaan is een incubatiertijd van meer dan 6 jaar gerapporteerd.

**Ziektebeeld**
Meestal vertonen dieren met rabiës tekenen van verstoringen aan het centraal zenuwstelsel. De meest betrouwbare tekenen zijn acute verandering van gedrag en onverklaarbaar progressief verlopende verlamming. Gedragsverandering kan samengaan met plotseling gebrek aan eetlust, tekenen van angst of nervositeit, irritatie en hypergevoelig voor overprikkeling (dit kan ook een constante erectie inhouden). Het dier kan zich terugtrekken. Stoornissen in de motoriek, gewijzigde stem (blaf) en verandering in temperament zijn duidelijk zichtbaar. Het dier kan onverklaarbare (a-typische) agressiviteit ontwikkelen; een normaal dociele hond wordt vreselijk agressief, wilde diersoorten die besmet zijn met rabiës verliezen vaak hun angst voor mensen en nachtdieren gaan ineens overdag rondzwerven.

Het klinische traject kan in 3 fasen worden ingedeeld – een voorfase, een excitatie en verlamming/eindfase. Deze indeling is echter van weinig praktische waarde vanwege de variaties in symptomen en de inconsistente lengte van de fasen. Gedurende de voorfase, die ongeveer 1 tot 3 dagen duurt, zijn er alleen maar vage klachten aan het centraal zenuwstelsel die snel verergeren. De ziekte ontwikkelt zich heel snel na de eerste tekenen van verlamming en de dood is dan zo goed als onvermijdelijk.

Er zijn 2 uitingsvormen van rabiës: “de furieuze rabiës”, wat verwijst naar dieren waarbij de agressie (in de excitatiefase) duidelijk aanwezig is en “de stille of verlammingsrabiës” wat refereert aan dieren waarbij de gedragsveranderingen minimaal zijn en de ziekte zich voornamelijk manifesteert als verlamming.

De furieuze vorm:
Dit is de klassieke “dolle-hond-vorm” ofschoon deze vorm bij alle diersoorten gezien kan worden. Er is in deze fase nog nauwelijks sprake van verlamming. Het dier raakt geirriteerd en met de geringste provocatie wordt het vals en agressief met gebruik van tanden, klauwen, hoorns of hoeven. De houding en expressie is er een van waakzaamheid en angst, met vergrote pupillen. Geluid kan een aanval uitlokken. Zo’n dier verliest alle voorzichtigheid uit het oog en heeft geen angst meer voor andere dieren. Carnivoren met deze vorm van rabiës zwerven vaak rond en vallen andere dieren, mensen en bewegende voorwerpen aan. Vaak verslinden ze vreemde voorwerpen, eieren, ontertanding, stro, stokken en stenen. Honden kunnen op de tralies van hun kooi/bench gaan kauwen, hun tanden brekend, en zullen een handbeweging voor hun bench/hok volgen in een poging die te bijten. Jonge pups kunnen het gezelschap zoeken van mensen en zijn dan overmatig speels, maar bijten wanneer ze geaaid worden en worden over het algemeen binnen een paar uur zeer kwaadaardig.

De stille of verlammingsvorm:
Deze manifesteert zich het eerst als verlamming van de keel en kaakspieren, meestal met overvloedig speekselen en de onmogelijkheid om te slikken. Het laten zakken/hangen van de onderkaak wordt vaak gezien bij honden. Deze dieren worden zelden agressief en zullen niet snel bijten. De verlamming ontwikkelt zich snel tot alle delen van het lichaam en coma en de dood volgen binnen een paar uur.
Diagnose
De klinische diagnose is lastig, in de eerste fase kan rabiës makkelijk verward worden met andere ziektes of met “normaal” agressief gedrag. De definitieve diagnose wordt vastgesteld na onderzoek van de hersenen en kan dus in feite alleen post mortem worden bevestigd.

Therapie (regulier)
Dieren waarbij rabiës wordt vermoed, worden altijd geëuthanaseerd. Als het vermoeden bestaat dat een mens gebeten is door een hondsdolle vos, vleermuis of hond bestaat de therapie uit het veelvuldig en diep uitwassen van de beet met zeep en toediening van een injectie rabiësimmunoglobulinen, waarbij de helft van de dosis wordt gegeven op de plaats van de beet. Injecties worden gegeven op de dag van de blootstelling zelf en op dag 3, 7, 14 en 28. Deze behandeling zal ook vast geschikt zijn voor dieren, maar wij hebben daar geen literatuur over kunnen vinden.

Prognose
Bijna altijd fataal, ook vanwege het feit dat dieren die verdacht worden van rabiës geëuthanaseerd worden.

Ziekte van Weil (Leptospirose)
De ziekte van Weil is een wereldwijd voorkomende aandoening bij mens en dier en wordt veroorzaakt door verschillende type bacteriën behorende tot de groep Leptospira. Er worden meer dan 200 verschillende types onderscheiden. Katten schijnen minder gevoelig voor deze bacterie te zijn. Er geldt in Nederland een meldingsplicht voor deze ziekte; jaarlijks worden er (in NL) gemiddeld 30 gevallen bij mensen en 10 bij honden gemeld.

Besmetting
Leptospiren leven in de nieren van hun natuurlijke gastheer (voor de hond is dat meestal de rat), vaak zonder deze ziek te maken en worden uitgescheiden via de urine. Besmetting vindt plaats doordat het dier in contact komt met de urine van besmette dieren. Dat kan zijn door oplikken van urine of likken aan genitaliën van met besmette honden, zwemmen in en/of drinken van water waar ratten leven. Gunstige omstandigheden voor de leptospiren zijn lauw, stilstaand tot weinig stromend water.

Incubatietijd
Uiteenlopend van 2-20 dagen, meestal 1-2 weken.

Ziektebeeld
Acuut nierfalen wordt gezien bij 80-90% van de dieren die klinische symptomen van de ziekte van Weil vertonen. In het begin zijn de symptomen niet-specifiek: koorts, depressie, lethargie, gebrek aan eetlust en daardoor vermagering, spierpijn, gewrichtspijn, oog- en neusuitvloeiing. Binnen een paar dagen kan dit zich ontwikkelen tot bloedvergiftiging wat zich kenmerkt met overgeven, uitdroging, lumbale pijn door vergroting van de nieren en nierontsteking, zweren op de tong-tip en necrose. Geelzucht en donkerrode urine (bulirubinuria), tekenen van galstoring door vernauwing of afsluiting van de galgangen en/of lever necrose wordt bij ongeveer 20% van de gevallen gezien, al dan niet in combinatie met nierfalen. Bij honden waar het nierfalen milder verloopt kunnen we soms alleen polyurie (veel plassen) en polydipsie (veel drinken) als symptomen zien.

Diagnose
Omdat de symptomen van de ziekte van Weil veel overeenkomsten vertonen met die van andere ziektes zal er naar leptospiren in bloed of urine gezocht moeten worden om de diagnose te kunnen bevestigen.
Therapie (regulier)

Prognose
Redelijk tot goed, al zijn er honden die er permanente nier- en/of leverbeschadiging aan over houden. De prognose is afhankelijk van de snelheid waarmee de ziekte wordt ontdekt en behandeld. Hoe langer gewacht wordt met de behandeling, hoe kleiner de kans op genezing is.
Kattenziektes

1. Hersenen: FeLV, FIV, FIP
2. Oog: niesziekte, FeLV, FIV
3. Neus
4. Mond/Keel: niesziekte, FeLV, FIV
5. Luchtpijp
6. Slokdarm: FeLV, FIV
7. Hart: FeLV, FIV
8. Longen: FeLV, FIV
9. Lever: FeLV, FIV
10. Nieren: FeLV, FIV, FIP
11. Darmen: kattenziekte, FeLV, FIV, FIP
12. Baarmoeder
13. Blaas: FeLV, FIV

Bron: Merial.nl

Feline Immunodeficiëntie Virus (FIV)
Net zoals AIDS (HIV) bij de mens, bestaat er ook een immunodeficiëntie-virus bij katten: FIV (feline immunodeficiëntie virus). Hoewel FIV tot dezelfde familie behoort als HIV wijst niets erop dat het virus kan worden overgedragen op de mens.

Besmetting
Het virus wordt overgebracht via bloedcontact.
Bij FIV geschiedt de voornaamste overdracht door een directe bijtwond en in veel mindere mate door langdurig sociaal contact. FeLV (Feline Leukemie Virus) wordt daarentegen voornamelijk door langdurig sociaal contact overgedragen en in een veel mindere mate door bijtwonden.

Incubatietijd
Uiteenlopend van enkele weken tot jaren; een kat kan wel meer dan 5 jaar besmet zijn met FIV zonder hiervan ziek te worden.
Ziektebeeld
Het ziekteverloop is vergelijkbaar met HIV. Het virus tast het immuunsysteem van de kat aan waardoor deze gevoelig wordt voor allerlei infecties (schimmels, bacteriën, virussen, parasieten enz.). Na infectie met FIV zijn er een aantal stadia:
• Acute stadium. Dit stadium kan zonder ziekteverschijnselen optreden. Soms wordt alleen wat koorts of gezwollen klieren waargenomen. Op dit moment is de kat bijzonder vatbaar voor huiden- en darminfecties.
• Asymptomatic fase. In deze fase vertoont de kat geen ziekteverschijnselen (meer) maar is het virus wel aanwezig in het bloed. Deze periode kan een aantal jaren duren, soms zelfs langer dan 5 jaar. De kat kan in deze periode andere katten besmetten.
• Fase met vage, algemene symptomen zoals terugkerende koorts, oogontsteking, verminderde eetlust en vermageren.
• AIDS gerelateerd stadium. Dit is het stadium waarin het de eigenaar opvalt dat de kat niet in orde is. Veel voorkomende ziekteverschijnselen zijn: tandvleesontstekingen, oogontstekingen, vermageren, lymfeknoopzwelling, benauwdheid, diarree. Deze symptomen worden over een periode van enkele maanden steeds erger.
• AIDS. Uiteindelijk zal een deel van de katten een stadium bereiken vergelijkbaar met AIDS bij de mens. De kat vermagert, krijgt chronische ziekteproblemen en allerlei secundaire infecties die hij niet kan overwinnen zoals bijvoorbeeld longontsteking. Ook neurologische verschijnselen worden nogal eens waargenomen bij katten met AIDS.

Diagnose
Door middel van bloedonderzoek. Met behulp van een bloedtest worden antilichamen tegen FIV aangetoond. De meeste katten maken antilichamen aan 3-4 weken na infectie. Een eenmalige positieve uitslag betekent dat de kat besmet is.
Bij gezonde katten kunnen vals-positieve uitslagen voorkomen. Is de test positief bij een gezonde kat dan zal het bloed voor bevestiging naar een gespecialiseerd laboratorium gestuurd moeten worden.

Therapie (regulier)
FIV is niet te genezen. Secundaire bacteriële infecties kunnen symptomatisch worden behandeld Specifieke antivirale therapie met Interferon van Virbac is mogelijk maar is niet 100% werkzaam. Het is daarbij een dure behandeling en wordt daarom in de praktijk nog niet veel toegepast.

Prognose
Door de lange periode (gemiddeld 5 jaar) die zit tussen besmetting met het virus en het ontwikkelen van ziekteverschijnselen hebben katten met FIV een betere prognose dan katten met FeLV. Zij kunnen meestal nog een aantal jaren een goed leven hebben voordat zij te ziek worden maar zullen uiteindelijk toch overlijden aan de complicaties van de ziekte.
Contact (en dan met name agressie) met andere katten moet voorkomen worden wat betekent dat de kat binnen of op eigen terrein gehouden moet worden.

Feline Infectieuze Peritonitis (FIP)
FIP is een virusziekte, die veroorzaakt wordt door een gemuteerd coronavirus. Het feline coronavirus (FcoV) is in eerste instantie onschuldig en veroorzaakt alleen wat lichte diarree, maar als het muteert kan de ziekte FIP ontstaan. De meeste katten maken in hun leven wel eens een infectie door met het coronavirus.
Binnen sommige kattenpopulaties zijn zelfs bij 80-90% van de katten antilichamen tegen het coronavirus gemeten; deze katten zijn dus ooit in aanraking geweest met het coronavirus. 1-5% van de seropositieve katten zal FIP kunnen ontwikkelen.
Een deel van de katten, die ooit een infectie met corona hebben doorgemaakt kan drager blijven, het virus blijft dan aanwezig in het lichaam. Deze katten zijn hier niet ziek van maar ze kunnen het virus wel verspreiden.
Onder bepaalde omstandigheden zal het coronavirus, dat nog in het lichaam aanwezig is, gaan muteren tot een kwaadaardige variant. We spreken dan van FIP.

**Besmetting**
Katten besmet met het coronavirus kunnen het virus uitscheiden via ontlasting, speeksel en urine maar niet iedere kat ontwikkelt ook FIP (1-5%). Of het coronavirus zich in het lichaam van de kat muteert tot FIP hangt af van een aantal factoren; o.a. de virusstam, genetisch bepaalde afweer van de kat, andere virusinfecties (FIV, FeLV) en het doormaken van stress spelen een belangrijke rol. Katten jonger dan 2 jaar of ouder dan 10 jaar zijn gevoeliger voor FIP. Er zijn de laatste jaren opvallend veel jonge katten (5-8 maanden oud) met FIP.

In een groep katten beperkt FIP zich vaak tot een enkele kat.

**Incubatiertijd**
Onbekend

**Ziektebeeld**
Er zijn veel verschillende ziektebeelden mogelijk, sommigen zijn zeer vaag en moeilijk te herkennen als FIP, anderen zijn juist zeer kenmerkend voor deze ziekte. De natte vorm is het duidelijkst te herkennen. Hierbij ontwikkelt zich een grote hoeveelheid karakteristiek vocht in borst en/of buikholte, waardoor respectievelijk benauwdheid en/of een dikke buik zal opvallen. Bij de droge vorm kunnen onttrekkingen in allerlei organen ontstaan, zoals de nieren, de lever, de milt, de lymfeklieren, het zenuwstelsel of de ogen, zodat een zeer variabel beeld kan ontstaan. In alle gevallen kan men vermagering, slomheid, slechte eetlust en recidiverende koorts waarnemen.

**Diagnose**
Via bloedonderzoek zijn antilichamen tegen het coronavirus te bepalen. Het is echter niet mogelijk onderscheid te maken tussen antilichamen tegen het onschuldige coronavirus en antilichamen tegen het "FIP"-virus. De aanwezigheid van antilichamen in het bloed zegt dus niets over het wel of niet hebben van FIP. Het blijft bij een waarschijnlijkheidsdiagnose, al is een verhoging van de gamma-globulines een duidelijke aanwijzing voor FIP, vooral wanneer er sprake is van geel dradentrekend vocht in de buikholte.

De definitieve diagnose FIP kan alleen gesteld worden door het aantonen van het virus in weefsels. Dit kan alleen via biopten uit organen of bij sectie.

**Therapie (regulier)**
Voor deze ziekte bestaat geen echte therapie en zeker geen genezende. De meeste katten die verdacht worden van FIP overlijden. Bij de natte vorm gaat dit vaak binnen enkele dagen tot weken en bij de droge vorm binnen een aantal maanden tot jaren.

Door middel van corticosteroïden kunnen de symptomen van FIP verminderd worden. Secundaire problemen zoals ontstekingen, koortsanvallen, nierfalen, leverfalen of epilepsie worden symptomatisch behandeld.

Sinds een aantal jaren is er een interferonproduct op de markt: Virbagen Omega. De werking hiervan berust op een mogelijk direct antiviraal effect en op de beïnvloeding van de immuunreactie. Het wordt toegepast bij de behandeling van katten met een verdenking op de natte vorm van FIP. Maar er is nog onvoldoende bewijs dat het middel echt effectief is.

**Prognose**
1-5% van de katten die besmet zijn (geweest) met het corona virus zal FIP kunnen ontwikkelen. 100% van de katten die FIP krijgen gaat dood.
Feline leukemievirus/ infectieuze leukemie (FeLV)
FeLV is een virusziekte die niet veel voorkomt. Het virus kan leukemie (tumoren van de witte bloedcellen) veroorzaken, maar dat is slechts een van de vele ziektebeelden die het virus veroorzaakt. Daarnaast tast het virus het immuunsysteem aan (immunosuppressie) waardoor onschuldige infecties opeens fataal kunnen verlopen.
Na een infectie met het FeLV kunnen er verschillende dingen gebeuren, afhankelijk van de weerstand en leeftijd van de kat.
In ± 30% van de gevallen zal het virus al kort na infectie geneutraliseerd worden: de kat wordt dan voor onbepaalde tijd immuun voor een infectie met FeLV en wordt niet ziek.
In ± 40% van de gevallen is het immuunsysteem van de kat niet sterk genoeg om het virus te overwinnen en zal het virus zich verspreiden in het bloed (viraemie).
In ± 30% van de gevallen ontstaat een zogenaamde latente infectie, daarbij blijft het virus wel aanwezig in de cellen van de kat, maar vermenigvuldigt zich niet. In dit geval kan elke weerstandsvermindering (stress, andere ziektes, corticosteroiden) ertoe leiden dat het virus geactiveerd raakt en zich alsnog gaat vermenigvuldigen. In een zeer gering aantal gevallen (<1%) blijft de kat wel drager van het virus, maar is zelf immuun (door antilichaamproductie blijft het virus in de cellen van de speekselklier en komt daar niet uit vrij). Dit noemt men een immune drager.
Besmetting
Het virus overleeft in de buitenwereld niet lang. Infectie vindt plaats door direct en intensief/langdurig contact tussen katten. Overdracht kan gebeuren via speeksel, bloed, ontlasting, slijm of baarmoeder (kittens).
Incubatietijd
1-4 maanden. Bij sommige katten kan nog ruim 3 jaar lang het virus in het beenmerg worden aangetoond maar deze katten zijn zelden besmettelijk voor andere katten.
Ziektebeeld
De meeste katten reageren met kortdurende koorts. In geval van een viraemie kunnen zich in de loop van enkele maanden tot jaren tal van ziektebeelden ontwikkelen. Het meest belangrijke zijn secundaire gevolgen van de infectie door een vermindere afweer, waardoor FIP, toxoplasmose, bacteriële ontstekingen, tandvleesontstekingen, abcessen, huidontstekingen en oogontstekingen kunnen ontstaan.
Andere mogelijke ziektebeelden kunnen zijn: tumoren van lymfatisch weefsel (leukemie, tumoren in lever, nieren, buikvlies of milt), bloedarmoede doordat het beenmerg niet goed meer functioneert, vermageren, benauwdheid, koorts, sloomheid, zwelling van lymfeknopen, anorexia, voortplantingsproblemen (abortus, sterfte van pasgeborenen kittens, onvruchtbaarheid) en verlammingsevenementen.
Diagnose
Via bloedtesten. Aangeraden wordt om de bloedtest na verloop van tijd te herhalen aangezien een dier positief kan reageren omdat hij bezig is het virus te elimineren maar ook omdat een aan FeLV lijdend dier een negatieve bloedtest kan hebben (bij sommige FeLV-vormen zelfs tot 60%). Naast bloedtesten is het ook mogelijk een verdacht stukje weefsel te onderzoeken op FeLV.
Therapie (regulier)
Regulier is er geen behandeling voor FeLV. De secundaire bacteriële ontstekingen kunnen symptomatisch worden bestreden. Experimenteel wordt gebruik gemaakt van Interferon van Virbac.
Prognose
Katten die daadwerkelijk ziek zijn zullen uiteindelijk overlijden (50% binnen 1 jaar, 90% binnen 3 jaar). Hoelang de kat nog kan leven met zijn ziekte is afhankelijk van de symptomen en zijn weerstand. De kat dient in ieder geval apart gehouden te worden van andere katten in verband met het besmetten van andere katten.
Kattenziekte (Feline Panleucopenie virus)
Kattenziekte is een virusinfectie van het maagdarmkanaal en wordt veroorzaakt door het parvovirus. Tevens tast het de afweer aan doordat de meeste witte bloedcellen doodgaan (panleucopenie).

Besmetting
Van kat op kat, via speeksel, urine, ontlasting en braaksel maar kan ook meegedragen worden met kleding, schoenen en pootjes (schoonlikken).
Het parvovirus kan lang (jaren) in de buitenlucht overleven. Geïnfecteerde dieren scheiden het virus tot wel 6 weken lang uit.

Incubatietijd
Ongeveer een week.

Ziektebeeld
Hoge koorts (40-41°C), braken, diarree (al dan niet met bloed) met uitdroging tot gevolg. Daarnaast heeft het dier vaak heftige buikpijn. Omdat het virus (bijna) alle witte bloedcellen doet verdwijnen en daarnaast het darmslimvlies ernstig aantast is het dier zeer vatbaar voor secundaire bacteriële infecties en longontsteking.

Diagnose
Dieren met plotselinge klachten als braken en diarree zijn verdacht. Door middel van een ontlastingstest en bloedonderzoek kan een zekere diagnose gesteld worden.

Therapie (regulier)
Voornamelijk ondersteunend: anti-braakmiddelen, vochtinfusen en AB op de secundaire bacteriële infecties.

Prognose
Zonder behandeling sterft 90% van de besmette dieren (volgens bronnen op het internet). Met behandeling zou de mortaliteit 50-75% zijn. Over de morbiditeit van kattenziekte konden we geen gegevens vinden. Wel dat kattenziekte in Nederland redelijk zeldzaam is.

Niesziekte
Niesziekte is een verzamelnaam voor veel voorkomende luchtweginfecties en kan worden veroorzaakt door een aantal verschillende soorten ziekteverwekkers. De belangrijkste ziekteverwekkers zijn twee virussen, een herpesvirus (rhinotracheïtisvirus) en een calicivirus, verantwoordelijk voor 80-90% van de niesziektegevallen en de bacteriën chlamydia en Bordetella bronchiseptica. Katten van alle leeftijden zijn gevoelig maar de ziekteverschijnselen zijn veelal het meest ernstig bij jonge dieren.

Besmetting
De belangrijkste manier van besmetting is via aerosolen. Dit zijn kleine vochtdruppeltjes met ziektekiemen die een besmette kat door te niezen de lucht inblaast. Deze druppels zijn zo klein dat ze lang (uren) in de lucht kunnen blijven hangen en over grote afstanden met de luchtstroom mee vervoerd kunnen worden. Hiernaast kan de ziekte ook worden overgedragen door besmette manden, kooien of via handen en kleding van de mens. Het herpesvirus wordt net als chlamydia overgedragen door direct contact tussen katten.

Incubatietijd
Varieert, afhankelijk van de ziekteveroorzaker 2-10 dagen.

Ziektebeeld
Het ziektebeeld verschilt per veroorzaker. Maar algemeen uit niesziekte zich door koorts en ontsteking van de slijmvliezen van de voorste luchtwegen (neus, keel), de ogen en de mond, waardoor de dieren niezen en speekselen. Bij katten, waar sprake is van een combinatie-infectie van virussen en bacteriën, kunnen de symptomen zeer ernstig zijn; de kat kan zichzelf zelfs doodhongeren. Veel
Katten krijgen koorts en door het opzwellen van slijmvliezen en snot/pusvorming krijgen ze het benauwd. Niesziekte kan ook middenoorontstekingen en ernstige problemen met het gebit (stomatitis) veroorzaken.

Het Herpesvirus (Rhinotracheitusvirus)
Deze niesziektevariant geeft vaak erg zieke katten met koorts en longontsteking. Vooral bij kittens kunnen er ernstige klachten aan de ogen ontstaan (conjunctivitis) met blijvende schade aan het hoornvlies. Katten die de infectie overleven kunnen de rest van hun leven bij tijd en wijle het virus dat zich in de oogzenuw terugtrekt uitscheiden, zij zijn dan (latent) drager.

Het Calicivirus
Net als bij het influenzavirus zijn er verschillende virustammen van het calicivirus met ieder hun eigen ziekteverschijnselen. Vooral jonge katten zijn gevoelig voor deze infectie. Naast niesklachten geeft deze infectie vaak zweren in de mondholte waardoor kittens moeilijk kunnen eten. Calicivirussen spelen een rol in het vaak voorkomende en levenslang aanwezige stomatitis-complex. Dit is een ziekte waarbij katten ernstige gebitsproblemen met zweren in de mondholte hebben. Recent is aangetoond dat dit virus ook door vlooien kan worden overgebracht.

Chlamydia
Deze veel voorkomende infectie geeft naast niesklachten en milde ziekteklachten vooral een hardnekkige ontsteking aan beide ogen (30% van de chronische conjunctivitis zou door chlamydia worden veroorzaakt). Daarnaast worden de algemene ziektesymptomen waargenomen.

Bordetella bronchiseptica (Bp)
Naast niesziekteverschijnselen kan deze bordetella-bacterie (verwant aan de kinkhoestbacterie bij de mens) ook de luchtpijp en de diepere luchtwegen (bronchiën) aantasten waardoor er zelfs hoestklachten ontstaan (hoestklachten zijn zeldzaam). Deze bordetella-infectie lijkt ook bij katten die hiervoor aanleg hebben (25%) astma te kunnen verergeren. Het is niet geheel duidelijk of bordetella een primaire ziekteverwekker is. Bij gezonde katten komt bordetella wel voor, maar dat heeft meestal geen invloed op de gezondheid.

Diagnose
In verreweg de meeste gevallen zal de diagnose niesziekte gesteld worden op basis van het verhaal, de verschijnselen en het lichamelijk onderzoek. In een aantal hardnekkige gevallen kan het nodig zijn aanvullend onderzoek te doen zoals een neus/oogswab voor kweken, bloedonderzoek en röntgenfoto’s. Bij langdurige infecties is het in ieder geval zaak om tevens te testen op FeLV en FIV.

Therapie (regulier)
Voor niesziekte veroorzaakt door virussen bestaan geen medicijnen om het te bestrijden en zal er puur symptomatisch moeten worden voorgeschreven met daarnaast zo nodig vochttoediening bij uitdroging en dwangvoederen bij anorexia. Bij Chlamydia als veroorzaker wordt naast doxycycline ook wel het humane middel Zitromax (azithromycine) ingezet.

Prognose
Indien niesziekte op tijd behandeld wordt, zijn de vooruitzichten prima. Wanneer het te laat behandeld wordt is er een groot risico op chronisch worden van de infecties c.q. altijd gevoelig blijvende luchtwegen. Bij kittens met niesziekte kan het zelfs voorkomen dat de oogleden met elkaar vergroeven.
Paardenziektes

Afrikaanse paardenpest
Afrikaanse paardenpest (APP) is een infectieuze ziekte veroorzaakt door het Afrikaanse paardenpestvirus. De ziekte, waar een meldplicht voor geldt, wordt ook wel gewoon paardenpest genoemd. In het Engels is de officiële naam African Horse sickness. Alle dieren die behoren tot de paardachtigen kunnen de ziekte krijgen, dus paarden, pony's, ezels, muilezels, muildieren en zebra's. Daarnaast kunnen ook honden besmet worden, maar waarschijnlijk alleen door het eten van vlees van besmette dieren. Mensen worden niet besmet met het virus.

Het APP virus is een RNA virus dat behoort tot de familie van de reovirussen en tot het geslacht van de orbivirussen. Het virus is o.a. nauw verwant aan het Bluetonguevirus. Er zijn 9 verschillende serotypen van het virus bekend.

De ziekte komt endemisch voor in grote delen van tropisch en sub-tropisch Afrika. De Sahara woestijn vormt een barrière voor verdere verspreiding van de ziekte. Boven de Sahara komt de ziekte niet endemisch voor. Wel komen er buiten de endemische gebieden af en toe uitbraken voor. De meest recente uitbraken waren in Portugal en Spanje, einde jaren '80. Er zijn nog nooit uitbraken noordelijker dan Spanje en Portugal geweest. APP heeft zich in deze landen tot op heden niet permanent kunnen vestigen.

Besmetting
Voor het overbrengen van APP is een vector nodig. Culicoides imicola is de belangrijkste biologische vector voor verspreiding van Afrikaanse paardenpest maar vrijwel zeker kunnen andere knuttensoorten zoals C. obsoletus (Europa) en C. sonorensis (Amerika) ook dienen als vector voor de ziekte. Het opwarmen van de aarde kan als gevolg hebben dat het potentiële verspreidingsgebied voor knuttensoorten verandert en daardoor ook dat van Afrikaanse paardenpest. De kans op uitbraken van Afrikaanse paardenpest zou hierdoor dus ook groter kunnen worden.

Besmetting kan niet plaatsvinden via direct contact tussen besmette dieren en vatbare dieren, maar geschiedt door overbrenging van besmet bloed via een knut. Een eenmaal geïnfecteerde knut blijft levenslang virus uitscheiden, omdat het virus in staat is zich te vermenigvuldigen in de knut.

De verspreiding en overleving van APP is afhankelijk van het aantal gevoelige dieren (paardachtigen), het aantal besmette dieren en de aanwezigheid van voldoende geschikte vectoren (knutten). De hoeveelheid knutten is o.a. afhankelijk van de temperatuur. Bij een lage temperatuur zijn de knutten niet of veel minder actief en is er geen virusvermeerdering in de knut. Hierdoor is er in principe geen verspreiding van het virus meer mogelijk. De langste periode waarvan aangetoond is dat het virus in een dier overleefde is 40 dagen. Als de koude periode, waarin de knutten niet actief zijn langer dan die 40 dagen duurt, dan zou de uitbraak kunnen stoppen. Er zijn echter verschillende mogelijkheden waarop het virus toch zou kunnen overleven in de winter. Een theorie is dat het virus in leven kan blijven in knutten die de winter overleven, of dat het virus in de eitjes van de knut de winter overleeft. Bij Bluetongue hebben we gezien dat het virus in Nederland kan overwinteren, dus voor APP is die kans er zeker ook. In Nederland komt APP vooralsnog niet voor.

Incubatie
Varieert van 2-10 dagen en is gemiddeld 5-7 dagen bij paarden.

Ziektebeeld
Na infectie door een knuttenbeet vermeerdert het virus zich eerst in de dichtbij gelegen lymfeknoop. Vervolgens verspreidt het virus zich via het bloed door het lichaam, waarna voornamelijk de longen, de milt, weefsels van het afweersysteem en cellen in de bloedvatwanden geïnfecteerd worden. De
viraemie verschilt per geval, maar duurt bij paarden gemiddeld 9 dagen. Bij ezels en zebra’s duurt de viraemie meestal langer. De langste viraemie is aangetoond in zebra’s en duurde tot 40 dagen.

APP kan in vier verschillende vormen voorkomen, de hartvorm, de longvorm, de gemengde vorm en de koortsvorm. De hartvorm, de longvorm en de gemengde vorm komen het meest voor in een populatie waar de ziekte voor het eerst wordt aangetroffen. De koortsvorm, de minst ernstige vorm, komt eigenlijk alleen voor in populaties waar de ziekte al langer voorkomt en bij muildieren en ezels. In Nederland zullen bij een uitbraak de besmette paarden naar verwachting 1 van de 3 ernstige vormen (hart-, long- of gemengde vorm) krijgen.

De longvorm
Deze vorm begint meestal met acute koorts en geeft vervolgens problemen met de ademhaling. De symptomen zijn o.a. snel ademhalen, gevoelige ademhalen, zweten, onregelmatig hoesten, opgezwollen neusgaten die een schuimige rode vloeistof uitscheiden, roodgekleurd oogbindweefsel. De benauwdheid verergerd snel.

De hartvorm
Deze vorm begint met koorts die 3-6 dagen aanhoudt. Hierbij krijgt het dier vochtophopingen (oedeem) in de kuiltjes boven de ogen en in de oogleden. Later kunnen de vochtophopingen zich verspreiden en zwelt het hele hoofd op. Opvallend is dat er juist geen vochtophoping in de benen optreedt.

De gemengde vorm
Deze vorm is een combinatie van de longvorm en de hartvorm. Meestal begint het met de hartvorm, waarna de longvorm volgt. Vaak wordt de diagnose van de gemengde vorm pas bij sectie vastgesteld.

De koortsvorm
Deze vorm heeft milde verschijnselen. Het dier heeft zo’n 3-8 dagen koorts. Verder kan de eetlust verdwijnen en is er licht oedeem in de kuiltjes boven de ogen.

Diagnose
De diagnose kan worden gesteld aan de hand van de symptomen, het snelle verloop, eventueel bloedonderzoek en uit sectie.
Direct: virologische moleculaire diagnose (van milt, long en lymfeklieren en bloedmonsters).
Indirect: serologische diagnose (antilichaam ELISA).

Therapie regulier
Er is geen therapie voor deze ziekte. Zodra de diagnose zeker is, is het advies: euthanasie. Vaccinatie is alleen toegestaan bij een uitbraak en mag niet preventief worden toegepast. Op dit moment is er geen geregistreerd vaccin beschikbaar in Europa. Ingeval van uitbraak ligt er bij het ministerie van LNV een draaiboek klaar dat uitgaat van het in Zuid-Afrika beschikbare vaccin.

Prognose
Paarden en muildieren zijn het meest gevoelig voor het virus en krijgen ook de ernstigste symptomen. Afhankelijk van de vorm die ze ontwikkelen gaat 50-95% van de besmette paarden en muildieren dood. De meeste dieren (95%) die met de longvorm besmet zijn, sterven binnen enkele uren. Van de paarden die de hartvorm hebben gaat 50% dood. Van de paarden die besmet zijn en de gemengde vorm krijgen gaat 70% dood. Dieren besmet met de koortsvorm herstellen meestal.

Ezels worden veel minder ziek en zebra’s hebben vaak helemaal geen symptomen als ze besmet zijn. Van de ezels gaat 5-10% van de besmette dieren dood en zebra’s gaan niet dood aan de ziekte.
**Droes**
Godeaardige droes wordt veroorzaakt door de bacterie Streptococcus equi. De naam van de ziekte komt van het Duitse Drüse (klier), omdat bij de ziekte vooral de lymfeklieren aan het hoofd ontstoken raken. Kwade droes, een besmettelijke en dodelijke ziekte bij paarden, wordt veroorzaakt door de bacterie Burkholderia mallei en komt in Europa niet meer voor.
De ziekte kent een wereldwijde verspreiding en is al zeer oud; er bestaan al beschrijvingen van uit de 12e eeuw.
De bacterie dringt het lichaam binnen via de achterkant van de keel en nestelt zich vervolgens in de amandelen en naastgelegen lymfeklieren. Vandaar verspreidt het zich naar de lymfeklieren in hoofd en nek en veroorzaakt daar de zwelling en abcesvorming die zo kenmerkend zijn voor deze ziekte.
Wanneer alleen de lymfeklieren tussen de kaaktakken ontstoken raken, dan spreekt men van kooierdroes.

**Besmetting**
De droesbacterie wordt overgebracht via de pussige neusuitvloeiing en het pus uit besmette lymfeknopen. De mens kan de bacterie ook overbrengen via pus aan de kleding, schoenen of handen. Bijna alle paarden maken de ziekte een keer door, vooral op jeugdige leeftijd. Door herhaald contact met de bacterie blijft er afweer aanwezig in het paard. Toch zijn er paarden die op een leeftijd van 10 jaar alsnog weer droes krijgen. Bij die paarden is er geen herhaald contact met de bacterie geweest en is de afweer laag geworden. Maar ook paarden met een andere ziekte onder de leden zijn gevoelig voor droes. Overdracht kan ook plaats vinden wanneer een hengst met droes een merrie dekt (dekdroes) of van veulen op merrie tijdens het drinken waardoor de merrie een ontsteking van de uierlymfeknopen krijgt.

**Incubatietijd**
4-12 dagen.

**Ziektebeeld**
In het acute stadium is het paard erg ziek; symptomen zijn ontsteking van neus, keel en strottenhoofd. De keelontsteking maakt het slikken pijnlijk en soms staat het paard met gestrekte hals. Het paard kan het benauwd hebben en hoesten. Uit de neusgaten kan eerst helder vocht komen, wat later overgaat in pusachtig slijm. Het heeft dan een rochelende ademhaling, tranende ogen en hoge koorts die kan oplopen tot 40 °C waardoor sufheid en lusteloosheid kunnen optreden.

In een later stadium ontstaan grote zwellingen van de keellymfeknopen die na verloop van tijd een abces worden. Door de zwelling van de keellymfeknopen is het pijnlijk om te eten en drinken. Pas als de abcessen in de lymfeknopen doorbreken naar buiten of naar de keel, wordt de druk op de keeltjesstreek minder. Men ziet dan pus aan de onderkant van de kaak of soms via de neusholte naar buiten komen, waarna de koorts zakt en het paard weer wat meer zal gaan eten en drinken.

Bij *verslagen droes* ontstaan er abcessen in de lymfeknopen door het hele lichaam heen en die kunnen dan openbreken. Vaak doen dan de darmlymfeknopen mee.

Bij *dekdroes* ontstaan er abcessen in en rond de schaamlippen. De dierenarts kan dan in de bekkenholte een grote massa voelen; dit zijn lymfeknopen met abcessenerin.

**Diagnose**
Aan de hand van de symptomen (koorts, pijnlijke keel, gezwollen keellymfeknopen) is de diagnose keelontsteking te stellen. Als er pus uit de lymfeknopen komt, is de diagnose droes aannemelijk. Door middel van een neusswab is dit aan te tonen.

**Therapie (regulier)**
De therapie is er op gericht om het paard te ondersteunen en ervoor te zorgen dat het blijft eten en drinken. NSAID’s worden toegediend om de (keel)pijn te verzachten en de koorts te remmen. Wanneer er nog geen abcessen gevormd zijn maar de diagnose droes wel gesteld is, kan er besloten worden om AB te geven. Indien de diagnose wordt gesteld nadat zich abcessen hebben gevormd, zal de dierenarts er soms voor kiezen de abcessen open te snijden om het pus te verwijderen. De abcessen moeten rijpen en de dierenarts kan besluiten trekzalf in te zetten om dit proces te

Prognose
Paarden herstellen over het algemeen goed van droes. Alleen de verslagen vorm kent een slechte prognose; hierbij is de kans groot dat de abcessen (met name in buik en borst) openbreken waar de paarden aan kunnen overlijden.

Huidschimmel (dermatophytosis, ringworm)
Dermatophytosis is de meest voorkomende huidziekte bij paarden. De ziekteveroorzakende schimmelsoorten die het meest worden aangetroffen zijn trichophyton en microsporum. Deze schimmels nemen bezit van de haarschacht die ze verzwakken en vervolgens haarbeschadiging veroorzaken. Sommige soorten kunnen daarnaast stoffen produceren die irriterend zijn en/of allergenen kunnen voortbrengen en vervolgens pruritis (jeuk) kunnen veroorzaken. Voor een schimmelinfectie is een “ingang” nodig; bijvoorbeeld kleine littekens, vocht of aanhoudende druk, daar waar de lokale afweer van de huid is verminderd (zoals onder het zadel en de singel).
De schimmelsporen zijn heel goed beschermd en te vergelijken met bijvoorbeeld de noten van een boom; het nieuwe leven zit beschermd in een sterke huls. Hierdoor zijn de sporen goed bestand tegen allerlei desinfectiemiddelen en enorm moeilijk te bestrijden.

In principe bouwt een paard afweer op tegen een doorgemaakte schimmelinfectie, maar omdat er meerdere soorten schimmels zijn, kan een paard wel meerdere keren problemen krijgen met deze huidinfectie.

Besmetting
De verspreiding van schimmel vindt plaats door het overbrengen van de sporen van de schimmel. Dit kan gebeuren door contact tussen paarden onderling, maar ook door mensen die de paarden verzorgen en honden die om de paarden heen lopen. En natuurlijk ook door het gebruikte materiaal, zoals borstels, zadeldekjes en halsters.
Omstandigheden en factoren die een infectie met schimmelsporen bevorderen zijn onder andere warmte, vochtigheid, vuil, een hoge stalbezetting en een slechte ventilatie.
Daar waar de huid week wordt door zweet raakt de huid soms licht beschadigd, zodat schimmels de kans krijgen zich te vestigen in de huid en zich te ontwikkelen. Ook wanneer paarden onder invloed van stress staan, neemt de afweer af en kunnen schimmels makkelijker aanslaan. Dit kan bijvoorbeeld gebeuren als een paard van stal verandert.

Schimmelinfecties bij paarden kunnen overgedragen worden op de mens.

Ziektebeeld
Een schimmelinfectie begint vaak met wat opstaande haren of bultjes die na een paar dagen schilferig worden. De haren vallen eraf en wanneer men haartjes van de aangedane plekken lostrekt zijn veel schilfers te zien aan de onderkant van deze haren. Een schimmelinfectie van de huid kan eruit zien als ronde, kale, vaak schilferige plekken (dan wordt het ook wel ringschurft of ringworm genoemd) of de huid vertoont wildekeurige kale plekken met korstjes en schilfers. Een schimmelinfectie zorgt voor jeuk maar vaak niet heel heftig.

Diagnose
De diagnose kan meestal met grote waarschijnlijkheid gesteld worden aan de hand van de symptomen. Om de diagnose te bevestigen kunnen enkele haren met schilfers op kweek gezet worden en kan aangetoond worden dat het om een ziekteverwekkende schimmelsoort gaat. Hierbij kan echter overgroe Roof niet-pathogene, in de omgeving voorkomende schimmels optreden waardoor de kweek niet altijd het verwachte resultaat oplevert.
**Therapie (regulier)**


Belangrijkste nadeel van de hierboven genoemde therapieën is dat de werkzaamheid beperkt blijft tot de periode waarin de middelen wordt toegepast. Alleen griseofulvine heeft een wat langere werkingsduur; deze stof wordt door de onderste (binnenste) huidlagen opgenomen en verdwijnt pas volledig na een complete vernieuwingscyclus van de huid. Van werkelijk langdurige bescherming is echter geen sprake.

Daarnaast was het mogelijk om het paard te vaccineren tegen schimmelinfecies, hetgeen zowel een genezend als een preventief effect zou hebben. Het vaccin is nu niet meer in Nederland verkrijgbaar maar wordt nog wel op de internationale site van de fabrikant (Boehringer-Ingelheim) vermeld.

**Prognose**

Als er geen nieuwe besmetting plaatsvindt, is het mogelijk om de schimmel op deze manier in 14 dagen te bestrijden. Het probleem is echter dat er vrijwel altijd sporen achterblijven, waardoor de bestrijding vaak veel langer duurt.

**Influenza (paardengriep)**

Influenza wordt veroorzaakt door een virus, behorend tot de groep Orthomyxovirussen die zich heel snel kunnen verspreiden. Het influenzavirus veroorzaakt een infectie van het epitheel van de bovenste luchtwegen en longen.

Het influenzavirus bij paarden bestaat net als bij het humane influenzavirus uit meerdere stammen; als een paard immunitéit heeft opgebouwd tegen de ene stam kan hij nog wel besmet worden met een andere stam. Sommige virussen lijken zo op elkaar dat immunitéit voor de ene stam ook bescherming biedt voor een andere stam (zie 'crosimmuniteit'). En net als bij het humane influenzavirus mutateert het paardeninfluenzavirus regelmatig.

**Besmetting**

Via de lucht (aërosool), direct van het ene op het andere paard en via mensen, kleding, ratten, vogels of borstels. Een besmet paard scheidt ongeveer 5-6 dagen het virus uit.

**Incubatietijd**

1-3 dagen.

**Ziektebeeld**

Hoge koorts (vaak in twee koortspeken), niet eten, algeheel ziek zijn, vergrote keellymfeknopen, hoesten en neusuitvloeiing. De neusuitvloeiing is in het begin vaak helder en wordt later etterig en slijmerig.

**Diagnose**

Als er binnen een stal meerdere paarden zijn met verkoudheidsverschijnselen, dan is de diagnose influenza erg waarschijnlijk. Dit kan worden bevestigd door middel van een bloedonderzoek of een viruskweek met een neusswab afgenomen in de acute fase.
**Therapie (regulier)**


**Prognose**

Voornamelijk jonge paarden (<2 jaar) en oudere paarden zijn gevoelig. Als het paard geen complicaties heeft, dan herstelt het vaak binnen een maand (ziekteduur is 2-10 dagen). Veulens die onvoldoende antistoffen hebben binnengekregen via de biest kunnen echter overlijden aan influenza. Complicaties die kunnen ontstaan zijn: bronchopneumonie, aantasting van de hartspier of chronische bronchitis.

**Rabiës**

Bij hondenziektes zijn we al uitgebreid ingegaan op deze ziekte. Besmetting en incubatietijd is bij paarden gelijk, echter het ziektebeeld kan afwijken: honden vertonen vaak de furieuze vorm, terwijl paarden (en andere landbouwhuisdieren) meestal de paralytische vorm vertonen. Therapie en prognose zijn gelijk aan die van de hond.

**Rhinopneumonie**

Rhinopneumonie wordt veroorzaakt door het Equine herpes virus (EHV). De twee subtypen EHV-1 en EHV-4 zijn de belangrijkste ziekteverwekkers, terwijl EHV-3 samenhangt met de veel voorkomende geslachtsziekte coitaal exantheem. Het subtype EHV-1 gaat gepaard met ziektes op het gebied van ademhaling (de verkoudheidsvorm), voortplanting (de abortus-vorm) en neurologie (de neurologische vorm), terwijl EHV-4 uitsluitend ademhalingsproblemen veroorzaakt.


**Besmetting**


Van het EHV is bekend dat het buiten het paard kan overleven; in 7 uur zou bij kamertemperatuur de helft van het virus dood gaan. Is de temperatuur lager dan kan het zich nog langer handhaven.

**Incubatietijd**

Enkele dagen tot ruim 1 week.

**Ziektebeeld**

Verkoudheidsvorm: lichte temperatuurstijging tot hoge koorts, verminderde eetlust, gezwollen lymfeknopen, verder kan het dier nog dikke benen krijgen, heeft heldere tot geelgroene neusuitvloeiing en ook de ogen kunnen gaan tranen. In de meeste gevallen is de infectie heel mild waardoor deze nauwelijks opgemerkt wordt.
**Abortusvorm:** bij een drachtige merrie die in aanraking komt met het EHV-1 kan de baarmoeder geïnfecteerd raken. Het virus verspreidt zich en infecteert de foetus. Dat leidt in de meeste gevallen tot abortus of er wordt een zeer zwak veulen geboren dat vaak binnen enkele dagen sterft als gevolg van beschadiging van de lever, nieren en longen door het virus. De merrie aborteert vaak pas een aantal maanden na het doormaken van de EHV-infectie, in het tweede deel van de dracht. Wanneer de merrie hoge koorts krijgt, kan ze zelfs binnen een paar dagen aborteren. Dit komt omdat door de koorts bepaalde prostaglandinen kunnen worden aangemaakt die een abortus veroorzaken.


Op het internet wordt ook nog melding gemaakt van een oogvorm. Deze zou heel zelden worden geconstateerd. Het oog raakt geïnfecteerd waardoor er witte vlekjes op het hoornvlies ontstaan. Deze plekjes moeten goed behandeld worden omdat het hoornvlies anders blijvend beschadigd kan raken. Daarnaast kan het voorkomen dat er geen afwijkingen te zien zijn aan het oog, maar dat het paard (tijdelijk) een verminderd of totaal verlies van gezichtsvermogen heeft. Meestal betreft dit één oog. Door welk sub-type deze vorm veroorzaakt zou worden is ons niet duidelijk.

**Diagnose**
Het virus kan worden aangetoond door het nemen van een neusswab. Belangrijk hierbij is dat dit gedaan wordt als de paarden koorts hebben. Ook kan geprobeerd worden het virus aan te tonen door middel van bloedonderzoek. De eerste bloedafname moet plaatsvinden tijdens de koortsfase en de tweede afname 3 weken later. In het 1e bloedmonster zullen nog maar weinig antilichamen aangetoond kunnen worden terwijl het aantal antilichamen in het 2e bloedmonster aanzienlijk gestegen zal zijn.

Bij vermoeden van de abortusvorm kan post mortem een diagnose vastgesteld worden op basis van de typische laesies in de placenta en de vrucht, virusisolatie en/of het aantonen van virale antigenen. Er zijn namelijk ook andere infectieziekten die abortus bij paarden kunnen veroorzaken, waaronder o.a. leptospirosis.

**Therapie (regulier)**
Het is alleen mogelijk om symptomatisch/ondersteunend te behandelen, bijvoorbeeld bij de verkoudheidsvorm met koortsremmende middelen in geval van hoge koorts. Vaak is therapie helemaal niet nodig; in de regel herstellen paarden heel snel en volledig van de verkoudheidsvorm.

Bij de abortusvorm wordt het veulen geaborteerd, heel zwak of dood geboren; er is geen therapie voor het veulen. De merrie vertoont meestal geen ziekteverschijnselen. Wel is het belangrijk dat de nageboorte er goed af komt zodat de merrie daar niet ziek van wordt.

In het geval van de neurologische vorm is er eigenlijk ook alleen maar ondersteunende therapie mogelijk. Deze paarden zullen intensief verpleegd en eventueel behandeld moeten worden op secundaire bacteriële infecties.

Bij de oogvorm wordt het aangetaste oog behandeld met zalf dat een virusremmend middel bevat.

**Prognose**
De paarden zullen over het algemeen goed herstellen van de verkoudheidsvorm en ook bij de abortusvorm zullen de merries weinig klachten ondervinden. Paarden die lijden aan de neurologische vorm kunnen na langdurige verzorging geheel of gedeeltelijk herstellen. Het herstel neemt wel lange tijd in beslag.
**Tetanus (klem)**

Tetanus wordt veroorzaakt door een toxine (tetanospamine) die door de bacterie Clostridium tetani wordt afgescheiden; tetanospamine is een neurotoxine. Neurotoxines blokkeren de overdracht van zenuwimpulsen waardoor het zenuwstelsel ontregeld raakt.

De Clostridium tetani bacterie komt normaal voor in de darmen van paarden en andere planteneters zonder dat deze er last van hebben en plant zich voort door middel van het vormen van sporen die via de mest in de omgeving verspreid worden. Ze komen voor in bijvoorbeeld aarde, uitwerpselen, op voorwerpen en plants in de omgeving, in natuurlijk en huishoudelijk afval, enz. De tetanussporen zijn anaerob, dat wil zeggen dat ze het beste gedijen in een omgeving zonder zuurstof. Zo kunnen ze jaren overleven. Direct zonlicht doodt of verzwakt de bacterie.

**Besmetting**
Via een diepe (steek)wond of na een wondinfectie met veel dood weefsel (bijvoorbeeld brandwonden).

**Incubatiertijd**
7-10 dagen.

**Ziektebeeld**
De tijd tussen de verwonding en de ontwikkeling van symptomen is afhankelijk van de afstand vanaf de oorspronkelijke wond naar de hersenen. Een wond in het hoofd zal na een week verschijnselen geven terwijl een wond in de voet pas na 3 weken of langer verschijnselen geeft.

De neurotoxines veroorzaken een soort verkramping waarbij de spieren stijf en hard worden en zich niet meer kunnen ontspannen of samentrekken. Het meest duidelijke, vroege teken is het sluiten van het derde ooglid over het oog. Hoe opgewondener het paard is, hoe duidelijker deze sluiting te zien is. Door de hand onder de mond te plaatsen en het hoofd op te tillen kun je deze kenmerkende beweging goed zien. De oren blijven rechtop staan, omdat de spieren aan de basis ervan verkrampt raken en om diezelfde reden is de staartwortel iets verhoogd. Het paard heeft een angstige gezichtsuitdrukking, waarschijnlijk omdat de spieren bij de mondhoeken verkrampt raken en worden teruggetrokken, waardoor een grimas ontstaat. Door het verkrampen van de kauwspieren ontstaat een kaakklem, waardoor de ziekte ook wel wordt aangeduid als “klem”.

Vervolgens raakt het paard zo verkrampd dat het kan gaan omvallen. Tenslotte kunnen de tussenribspieren ook verkrampt raken, waardoor het paard niet meer kan ademhalen en zal stikken.

**Diagnose**
De diagnose wordt meestal gesteld door het beeld van de symptomen en de voorgeschiedenis. De tetanusbacterie kan opgespoord worden in de wond maar omdat spoed vereist is, wordt de therapie meestal onmiddellijk gestart bij vermoeden van tetanusinfectie.

**Therapie (regulier)**
De therapie is er op gericht het voor het paard zo comfortabel mogelijk te maken. De gifstoffen zullen uit het lichaam moeten. Daarnaast worden de volgende maatregelen genomen: de stal wordt verduisterd en het moet stil zijn, zodat het paard zo min mogelijk prikkels ontvange en geen aanval van kramp kan krijgen. Rust is dus heel belangrijk. Het paard wordt soms in de benen gehouden met behulp van een broektakel. Spierrampen worden geopereerd door toediening van spierontspanners. Daarnaast wordt geprobeerd om de toxines van de Clostridium tetani weg te vangen door middel van een tetanus anti-toxine injectie en de bacterie zelf wordt bestreden met AB.

**Prognose**
Als het paard nog zelf drinkt, is de prognose redelijk. Komt het binnen 24 uur te liggen, dan is de prognose slechter. Deze wordt nog slechter als er botbreuken zijn opgetreden of als er doorligplekken ontstaan. Als complicatie kan een paard zich verslikken doordat tijdens een krampaanval de slokdarm en de luchtpijp niet goed meer werken. Door het zich verslikken kan een longontsteking ontstaan.
West-Nijl virus
Het West Nijl Virus (WNV) behoort tot de familie der Flaviviridae genus flavivirus. Het West Nijl virus wordt overgedragen door geleedpotigen (arthropoda) en valt daarom onder de arthropod–borne virussen afgekort tot arbovirus. Insecten, vogels, zoogdieren én mensen kunnen geïnfecteerd worden met WNV. Zowel mensen als paarden zijn "dead-end" gastheren. De ziekte kan dus niet van paard op paard of van paard op mens worden overgedragen. De ziekte wordt door geïnfecteerde muggen, waaronder de tijgermug, verspreid.


Besmetting
Het virus wordt overgedragen door muggen. In gebieden waar het virus voorkomt is minder dan 1% van de muggen drager. Bovendien leidt een steek van een geïnfecteerde mug in minder dan 1% van de steken tot ernstige symptomen. De overdragende muggensoorten zijn vrijwel altijd van het geslacht Culex.

De meest waarschijnlijke manier waarop het West-Nijl virus in Nederland zal komen, is via besmette trekvogels. Vogels zijn meestal drager van het virus zonder daar last van te ondervinden. Muggen zijn de tussengastheer, die het virus overbrengen op (onder meer) paarden en mensen. Zoals hierboven al gezegd, zijn paarden dead-end gastheren en kunnen zij de ziekte niet overdragen.

Uit onderzoek blijkt dat een gemuteerd gen paarden gevoelig maakt voor het West-Nijlvirus. De Australische professor David Adelson (Universiteit Adelaide) en Amerikaan Jonathan Rios (Universiteit Zuid Texas) voerden een onderzoek uit en publiceerden hun bevindingen in het wetenschappelijke tijdschrift PloS ONE.

Incubatie
5-15 dagen.

Ziektebeeld

Soms krijgen paarden coördinatieproblemen (ataxie) of raken ze in meer of mindere mate verlamd.

Diagnose
Laboratoriumdiagnose is mogelijk door middel van serologisch onderzoek, maar kruisreacties met andere flavivirussen kunnen een probleem vormen. Verder is het mogelijk om de aanwezigheid van IgM-antistoffen aan te tonen in het hersenvocht. IgM-antistoffen kunnen normaal de bloed-hersenbarrière niet passeren; de aanwezigheid van de antistoffen in het hersenvocht duidt dus op een infectie van het centraal zenuwstelsel.

Ook is er een commerciële kit verkrijgbaar om de diagnose West-Nijl virus te stellen. Hiervan is de ELISA-test de meest betrouwbaar.

Therapie (regulier)
Er bestaat regulier geen geneesmiddel voor deze virusziekte. Als ondersteuning kunnen ontstekingsremmers en hyperimmuun plasma worden gegeven.

Prognose
Er is melding van een sterftepercentage bij klinisch zieke paarden van maar liefst 40%, al worden ook getallen tussen de 20-57% genoemd. Wij hebben geen cijfers over de morbidity kunnen vinden behalve dus dat minder dan 1% van de muggen drager is en dat een steek van een geïnfecteerde
mug in minder dan 1% van de gevallen leidt tot infectie. Paarden kunnen de ziekte met een agressieve ondersteunende therapie (koortsremmend, ontstekingsremmend, rustgevend) overleven. Sommige paarden zullen er echter permanente neurologische schade aan overhouden.
VACCINEREN

De geschiedenis van vaccinatie
Na alle ziektes te hebben doorgenomen waarvoor gevaccineerd kan worden, is het belangrijk te weten hoe men tot vaccinaties is gekomen. Dit hoofdstuk vertelt hier meer over.

De ziekte pokken wordt al 1000 jaar voor onze jaartelling beschreven als een virale infectieziekte die in 10-20% van de gevallen een dodelijke afloop kende. In 430 v.C. wist men in Athene dat mensen die de ziekte hadden doorgemaakt, deze niet vaak een tweede keer kregen en, indien ze toch opnieuw ziek werden, er in ieder geval niet aan stierven. Dit gegeven is voor verschillende volkeren aanleiding geweest om gezonde personen opzettelijk te besmetten.

In 1721 wordt op het platteland van Engeland het principe van bescherming tegen pokken via opzettelijke besmetting geïntroduceerd door Mary Wortley Motagu. Het gaat daarbij om zogenaamde variolatie: het inbrengen in de huid van het gedroogde materiaal, geïsoleerd uit echte pokken (Variola). Zij heeft de techniek van variolatie afgekeken in Konstantinopel, waar deze net als in India waarschijnlijk al eeuwen wordt toegepast. Echter, de bakermat van de variolatie is vrijwel zeker China. Er zijn uit de 17e eeuw stammende beschrijvingen gevonden van een procedure die tot tenminste het jaar 1000 terug zou gaan. Daarbij werd gedroogd materiaal uit pokken op stukjes katoen gebracht en dan in de neus gestopt of zelfs rechtstreeks in de neus geblazen, zoals een oude prent laat zien.

De techniek van variolatie is vrij gevaarlijk want zo’n 1-3% van de ontvangers kan daardoor pokken oplopen en daar zelfs aan sterven. Toch wordt de techniek toegepast omdat de kans dat de variolatie beschermt tegen sterfte door pokken veel groter is dan het risico op deze wijze pokken op te lopen.

Edward Jenner


Op basis van deze experimenten begint hij later zijn vaccinatieproeven. Hij besmet de 8-jarige James Phipps met koepokkenvirus (Vaccinia) geïsoleerd uit een pok op de hand van een melkmeisje, met als doel bescherming tegen pokkenziekte. De techniek is dezelfde als bij variolatie, maar wordt nu vaccinatie genoemd. Na een tijdje infecteert hij de jongen met het echte pokkenvirus en deze wordt niet ziek. Wat meestal niet vermeld wordt, is dat zowel James Phipps (die 20 keer gevaccineerd werd) en de zoon van Jenner (ook meerdere keren gevaccineerd) op 21-jarige leeftijd overlijden aan tuberculose, een ziekte die gelinkt wordt aan het pokkenvaccin.

Dit experiment vormt de basis voor de wereldwijde introductie van vaccinatie (‘vacca’ betekent koe en vaccina=koepokstof) tegen pokken. Het is achteraf duidelijk dat Jenner voortborduurde op de al bestaande variolatie en ook vrijwel zeker is geïnspireerd door Benjamin Jesty, een veehouder die in 1774 zichzelf en zijn gezin inoculeerde met koepokkenvirus en zo beschermd tegen pokken. Jesty, in tegenstelling tot Jenner, zag de algemeenheid van dit principe echter niet in. Het kan ook zijn dat Jenner kennis heeft genomen van de Nederlandse Geert Reinders die in 1774 als eerste met een vaccin kwam tegen runderpest. Reinders ondertekte dat koeien die genezen waren van runderpest kalveren voortbrachten die gedurende de eerste levensperiode immuun waren voor deze ziekte.

Ondanks het ogenschijnlijke grote succes van deze pokkenvaccinatie, begrijpt men het werkingsmechanisme ervan in de eerste helft van de 19e eeuw niet. Men gelooft dan nog steeds dat bacteriën uit ‘vuile lucht’ ontstaan. Het is Louis Pasteur die in de jaren zestig van de 19e eeuw aantoont dat deze denkwijze niet correct is; bacteriën ontstaan niet uit “vuile lucht” maar hygiëne (Semmelweis: liet artsen hun handen wassen, dat was voordien niet gebruikelijk), sterilisatie (Lister: steriliseerde operatie-instrumenten en wonden met fenol) en pasteurisatie (Pasteur: toonde aan dat verhitting van o.a. melk bederf voorkwam) kunnen infecties voorkomen.

Pasteur slaagt er in kiemen te isoleren die hij weer opkweekt op voedingsbodems. Hij gaat verder op de ingeslagen weg en zorgt voor een nieuwe bloeiperiode in de vaccinologie; hij vindt een methode om gevaarlijke kiemen voldoende af te zwakken. Pasteur probeert allerlei ziekteverwekkers te veranderen door ze in dieren te brengen die geen last van die ziekteverwekker hebben. Dat herhaalt hij vervolgens een aantal keren op nieuwe dieren. Hij ziet dat deze zogenoemde passages de ziekteverwekker inderdaad zwakker maken. Met deze verzwakte ziekteverwekkers infecteert hij vervolgens de echte gastheer. Die wordt niet meer ziek, maar wel immuun tegen de ziekteverwekker. Het concept van doelbewust verzwakken in het laboratorium (attenuatie) is hiermee geboren. Hij doet eerst ervaring op door een kudde schapen op deze manier te beschermen tegen de dodelijke anthrax en gevogelte tegen kippencholera.

Een van zijn latere experimenten betreft de verwekker van hondsdolheid (Pasteur heeft het over het virus, wat letterlijk gif betekent, maar heeft geen idee wat een virus eigenlijk is). Hij heeft de hondsdolheid-verwekker verzwakt door passage in konijnen. Met materiaal uit die konijnen kan hij honden beschermen tegen hondsdolheid.


In het begin van de 20e eeuw worden bacterietoxines ontdekt; eiwitten die bacteriën bij de infectie van de gastheer helpen. Toxines kunnen worden gemodificeerd tot ongevaarlijke toxoiden. Deze kunnen worden gebruikt als vaccin tegen de toxines en dat resulteert midden jaren 20 van de vorige eeuw in de introductie van de difterie- en tetanus toxoidevaccins, de eerste subunitvaccins.

In 1931 wordt voor het eerst aangetoond dat sommige virussen kunnen worden gekweekt op bevruchte en daarna bebroede eieren i.p.v. tot dan toe in levende dieren.

Ontwikkeling en productie van een vaccin
De productie van een vaccin vindt plaats in zogenaamde clean rooms. Dit zijn extreem schone ruimten, waarbij de omstandigheden (lucht, temperatuur, vochtigheid) zo geconditioneerd zijn, dat de kans op vervuiling van het vaccin zo klein mogelijk zijn. In de clean rooms worden de media's gemaakt. Media's zijn vloeistoffen die als basis dienen voor het kweken van het micro-organisme. De hiervoor gebruikte technieken verschillen sterk, want een bacterie is tevreden met een lekker maal (de voedingsbodem) en de juiste temperatuur terwijl virusen zich alleen vermenigvuldigen in levende cellen. Voordat de gekweekte micro-organismen als vaccin in een flesje terechtkomen, ondergaan ze tientallen bewerkingen.

Voor een optimale vaccinproductie moeten de cellen zich vrij in de oplossing (kweekmedium) kunnen bewegen. De "fabriekscellen" zijn zo ingesteld dat ze oneindig blijven delen, een hoge groeisnelheid hebben en weinig eisen stellen aan het voedingsmedium. Bloedserum is een ideaal groeimiddel voor cellen maar kan andere virusen of zelfs prionen bij zich dragen. Daarom wordt een speciaal medium gemaakt met voedingsstoffen en groeifactoren maar zonder dierlijke ingrediënten.

In de celkweekruimte heerst een overdruk om te voorkomen dat bacteriën en virusen de celkweek vervuilen. In de viruskweekruimte heerst een onderdruk om te voorkomen dat het virus “ontsnapt”.

Als er voldoende cellen gemaakt zijn, worden ze vanuit de celkweek overgepompt naar de viruskweek. De cellen worden daar geïnfecteerd met het in de viruskweek aanwezige virus, in dit voorbeeld het griepvirus. Na een paar dagen zit er voldoende virus in de oplossing en wordt het overgepompt naar de viruszuivering. De vloeistof komt van onderaf de centrifuge in en aan de bovenkant stroomt de vloeistof met virusen maar zonder de celresten over de randen van het binnevat. Hierna wordt de vloeistof nog een aantal malen gefilterd. Daarna wordt het virus in grote vaten gedood met bijvoorbeeld formaline en is het klaar voor gebruik in vaccins.

Wanneer een virus kan groeien in een kippenembryo, is dat een tamelijk gemakkelijke en relatief goedkope dierlijke gastheer. Er zijn diverse membranen in het ei waarop het virus kan groeien. Nadat het virus op de (voor deze soort) juiste plaats is geïnjecteerd, wordt na enige dagen de virusgroei zichtbaar door soortspecifieke symptomen. Deze methode was eens de meest gebruikte methode en wordt nog steeds voor sommige vaccins (zoals influenza) op grote schaal toegepast.

Voor het jaarlijkse griepprikvaccin worden bevruchte kippeneieren 9 dagen bebroed voordat ze een injectie krijgen met het griepvirus. Wordt er te vroeg geïnjecteerd dan sterft het embryo voordat er voldoende virusdeeltjes zijn geproduceerd. Gebeurt dit te laat, dan is het immuunsysteem in stelling en vermeerdert het virus niet. Elk ei is zo gedraaid dat de luchtzak bovenin zit. De injectienaald prikt tussen de embryonale vellen de allanthoisholte (de poepzak) aan. Het virus groeit hier op de epitheellaag. Na een paar dagen wordt het vocht uit de allanthóis weggezogen. Eén ei levert meestal voldoende virus voor één dosis vaccin.

Soorten vaccines en hun bijwerkingen
Er zijn verschillende soorten vaccines beschikbaar bij de gezelschapsdieren, het meest gebruikt zijn de zogenaamde klassieke vaccines waaronder de dode vaccines en levend (verzwakte) vaccines vallen - ook wel levend geattenuerde vaccines genoemd - en vaccines bestaand uit toxoiden. Daarnaast wordt er steeds meer gebruik gemaakt van moderne vaccines, de zogenaamde subunitvaccins.

Dood vaccin
In een dood vaccin zit geen intact virus, het virus wordt als het ware in stukjes gehakt door toevoeging van formaline. Alle stukjes virus gaan in het vaccin. Omdat het virus niet meer intact is kan het zich niet voortplanten in het lichaam en wordt het dier er niet ziek van. Het nadeel van een dood vaccin is echter dat het immuunsysteem hier niet zo goed op reageert en daarom zijn er aan dood vaccines stoffen toegevoegd die het immuunsysteem aanzetten tot reactie (adjuvantia) waardoor het immuunsysteem gaat reageren zodat het vaccin beter gaat werken.
Op deze adjuvantia komen we later nog terug, maar veel van de bijwerkingen van dode vaccins zijn aan deze activerende stoffen te wijten.

Dode vaccins werken kort en moeten daarom op tijd geboosterd (herhaald) worden. De eerste vaccinatie werkt een week of 3, 4 en moet binnen die tijd nog een keer herhaald worden om blijvend hoge antilichamen (IgG) te krijgen.

**Bijwerkingen dood vaccin**

De bijwerkingen van dode vaccins hebben vaak met adjuvantia te maken. Een bijwerking die je bij een dood vaccin regelmatig ziet is allergie. Door de activerende stoffen zal het lichaam eerder (over)reageren. Allergische reacties kunnen variëren van lichte irritatie, jeuk, opzwellingen van de kop, buitlen op het lichaam tot een dier dat dood gaat door shock.

Een andere bijwerking is de vorming van fibrosarcomen. Dit zijn tumoren die ontstaan op de injectieplaats en tot nu toe voornamelijk bij katten worden gezien na gebruik van dode vaccins (kattenleukemie en hondsdolheid). Dit zijn allebei vaccins die in Nederland niet veel gebruikt worden bij katten, maar in Amerika waar het verplicht is om honden en katten te vaccineren tegen hondsdolheid, wel. Daar worden katten dus herhaaldelijk met het hondsdolheidvaccin gevaccineerd. Fibrosarcomen zijn over het algemeen agressieve tumoren die met stervormige uitlopers groeien. Ze moeten daarom heel ruim wegenomen worden maar dit lukt vaak niet want de meeste dierenartsen vaccineren of tussen de schouderbladen of op de ribwand en daar kan maar beperkt weefsel weghaalbaar worden. Dit is de reden dat de dierenartsen in Amerika wordt geadviseerd om de hondsdolheidvaccinatie in de staart of achterpoot te geven zodat men, mocht er een tumor ontstaan, eventueel kan overgaan tot amputatie.

Onder de dode vaccins vallen ook de toxoid-vaccins, dat zijn vaccins die gericht zijn tegen de ziekmakende toxinen die door bacteriën geproduceerd worden. Deze bevatten toxines die 'ontgift' zijn door middel van formaline (oplossing van formaldehyde in water).

Het nadeel is dat er meerdere vaccinaties nodig zijn voor er daadwerkelijk sprake is van immunititeit en dat deze na een bepaalde tijd weer geboosterd moeten worden.

De jaarlijkse tetanusinjectie voor paarden valt onder deze groep. Bij mensen wordt geadviseerd deze injectie om de 10-15 jaar te herhalen.

**Subunit vaccin**


Voorbeeld van een subunit vaccin is het parvovirus, dat is een virus dat voornamelijk in darmcellen groeit maar in levercellen niet goed kan leven. Bij mensen wordt geadviseerd deze vaccinatie om de 1-2 jaar te herhalen.

**Levend vaccin**

Levend vaccin bevat wel het hele virus, alleen is dit virus verzwakt; dit wordt ook wel levend, geatenuerd of levend verzwakt vaccin genoemd. Een levend, geatenuerd vaccin wordt gemaakt door een virus te laten groeien in een cel waarin hij wel kan groeien maar waar hij het eigenlijk niet heel erg naar zijn zin heeft. Als voorbeeld: het parvovirus heeft een voorkeur voor darmcellen; in levercellen voelt het zich niet thuis en doet daar weinig kwaad. Er zijn altijd wel cellen waarin een virus zich kan vermeerderen maar in mindere mate.
Het blijkt dat als dit een aantal keren wordt herhaald - het laten groeien in niet-voorkeurscellen - het virus zwakker wordt en het virus niet in staat is om bij een gezond dier het organisme ziek te maken. Ook al is het virus verzwakt, het kan in sommige gevallen nog wel ziek makend zijn zoals nog wel eens bij de parvovaccinatie wordt gezien; een pup krijgt na de parvovaccinatie daadwerkelijk parvo. Bij gebruik van een levend, geattenueerd vaccin bestaat dus het risico dat het virus zich daadwerkelijk onder de voor het virus juiste omstandigheden gaat vermeerderen en ziekte veroorzaakt.

Levend geattenueerde vaccines werken langer dan dode vaccins, er is geen booster nodig. Omdat het in het vaccin bevindende virus zich vermeerdert, wordt het immuunsysteem goed gestimuleerd en hoeven deze vaccines niet herhaald te worden om een goed effect te krijgen.

**Bijwerkingen**

Een bijwerking die bij levend geattenueerde vaccines kan optreden is bijvoorbeeld een allergie voor bepaalde cellen. De virussen worden namelijk gekweekt op bepaalde celllijnen (zijnde de niet-voorkeurscellen). Daar worden vaak kippeneieren of kalverniercellen voor gebruikt en het zou kunnen dat als een dier vaak gevaccineerd wordt met of gevoelig is voor een vaccin dat van kalverniercellen afkomstig is (er zitten altijd nog restsporen -eiwitten- van diese cellen in het vaccin) dat het dier op termijn een allergie voor kalfsvlees kan krijgen. Hetzelfde geldt voor kipcellen. Aan de steeds meer voorkomende kip- en runderallergie bij honden zou mogelijk vaccinatie ten grondslag kunnen liggen.

**Bescherming en werkzaamheid vaccinatie**

Of een vaccin voldoende bescherming biedt wordt door de fabrikanten op verschillende manieren getest, namelijk door het meten van antilichamen en door challengeproeven.

Onafhankelijk van de gebruikte entstof bestaat de bescherming die een dier na vaccinatie krijgt uit 3 delen:

- **T-killercellen** (niet meetbaar).
- **Antilichamen titer** (meetbaar).
- **Geheugencellen**, van zowel de T- als de B-cellen worden geheugencellen gemaakt (niet meetbaar).

Al deze bovenstaande systemen geven een vorm van bescherming, echter, het enige wat dus meetbaar is zijn de antilichamen. Aan de hand van de hoeveelheid antilichamen in het bloed (de zogenaamde titer) wordt de mate van immuniteit bepaald; een voldoende hoge titer betekent dat er voldoende antilichamen in het lichaam aanwezig zijn en er dus sprake zou moeten zijn van voldoende bescherming. Maar wanneer er nog maar weinig antilichamen gemeten worden, wil dat nog niet zeggen dat het dier onbeschermd zou zijn omdat er dus nog sprake is van de aanwezigheid van geheugencellen, hoewel niet meetbaar.

Dr. Jean Dodds meldt in een interview in 2009 in NATURAL HORSE Magazine (Volume 11, Issue 2) dat slechts de aanwezigheid van antilichamen (de hoeveelheid doet er niet toe) al voldoende zou zijn om bescherming te bieden voor ziektes als hondenziekte, HCC, parvo en kattenziekte. Voor rabiës en leptos zou het aantal antilichamen wel belangrijk zijn, daar zou pas sprake van bescherming zijn wanneer deze een bepaalde grens hebben bereikt. Er zijn overigens ook dieren die nooit een hoge titer behalen, hoe vaak ze ook gevaccineerd worden.

Een groeiend aantal dierenartsen laat zich bij het bepalen van het juiste vaccinatiemoment leiden door de hoogte van titers. In principe is er (in elk laboratorium) voor elke ziekte te meten hoeveel antilichamen er aanwezig zijn, maar dat is een tamelijk kostbare en langdurige business. Er bestaat tegenwoordig een sneltest - de zogenaamde Vaccicheck - voor de meest belangrijke honden- en kattenziektes (hondenziekte, HCC, parvo, kattenziekte). Voor rabiës en leptos zou het aantal antilichamen een belangrijk zijn, daar zou pas sprake van bescherming zijn wanneer deze een bepaalde grens hebben bereikt. Er zijn overigens ook dieren die nooit een hoge titer behalen, hoe vaak ze ook gevaccineerd worden.

De uitslag van deze test wordt op steeds meer hondenscholen en in pensions geaccepteerd i.p.v. een vaccinatielijst in het dierenpaspoort.

Er is voor zover wij weten geen sneltest(en) voor hondenziekte, parvo en kattenziekte. Voor zover wij weten kunnen achterhalen is er in Nederland alleen een test beschikbaar om de titer te

**Challenge**

In feite is blootstelling aan de betreffende ziekteverwekker de beste test voor de werkzaamheid van een vaccin. Dit blootstellen wordt d.m.v. dierproeven in een laboratoriumsituatie gedaan bij een groep niet en een groep wel gevaccineerde dieren waar na verloop van tijd beide groepen besmet worden met de ziekte. Er wordt daarna gekeken welke en hoeveel dieren er ziek worden. Dit zijn lastige proeven om te doen vanwege de duur van de test (jaren).

Een bezwaar bij challenges is de manier van toediening van de ziekteverwekker. Deze is lang niet altijd vergelijkbaar met de wijze waarop een natuurlijke besmetting plaatsvindt. Soms wordt een ziekte zoals hondenziekte, die normaal gesproken aerosol wordt verspreid en waarvan de natuurlijke besmetting via de slijmvliezen plaatsvindt, 'gewoon' onder de huid ingejecter en is de gegeven dosis van het bewerkte virus (want bewerkt tot een oplossing vergemakkelijkt de toediening) 100% fataal bij ongevaccineerde dieren, terwijl besmetting via de natuurlijke weg zelden zo'n hoge mortaliteit behaalt.

Verder zijn de onderzoeken bij de challenges vooral gericht op de lengte van de immuniteitsduur, er is zover wij weten nooit een langlopend onderzoek gedaan naar de uitwerking van vaccinaties op het organisme. Bijwerkingen binnen een periode van 2 weken worden geregistreerd, maar effecten op de hele lange termijn niet.

Daarnaast kunnen laboratoriumsituaties weliswaar wenselijk zijn met het oog op standaardisatie en reproduceerbaarheid, maar ze bootsen het leven niet na; proefdieren verschillen aanmerkelijk van dieren (en mensen) die onder natuurlijke omstandigheden leven. Ook dit gegeven maakt een challenge discutabel.

Een challenge is dus eigenlijk niet te vergelijken met het oplopen van een natuurlijke ziekte en wij vragen ons af in hoeverre de resultaten van zo'n test zich verhouden met die van de praktijk.

Zo vonden wij een onderzoek naar de uitbraak van hondenziekte in Finland in 1990 (1997, C. Ek-Kommonen e.a, Outbreak of canine distemper in vaccinated dogs in Finland). Het geschatte aantal gevallen was ten minste 5.000 en de mortaliteit bedroeg (geschat) 30%. Van de bevestigde 865 gevallen was 631 (73%) tussen de 3 en 24 maanden oud; 487 (56%) was op z'n minst eenmaal gevaccineerd en 351 (41%) beschikte over een complete vaccinatiegeschiedenis.

Dus bij deze uitbraak van hondenziekte werden zowel gevaccineerde als ongevaccineerde dieren aangedaan. Het percentage gevaccineerde dieren (56%) lag zelfs nog hoger dan het percentage ongevaccineerde dieren (44%). De auteurs van dit onderzoek zetten hun vraagteken bij de werkzaamheid van een bepaald vaccin, omdat onder de getroffen honden die volledig gevaccineerd waren het aantal honden dat gevaccineerd was met het meest populaire vaccin significant hoger lag (aantallen hebben wij niet kunnen vinden) dan aan de hand van de verkoopcijfers verwacht zou kunnen worden.

Christopher Day (dierenarts) heeft een onderzoek uitgevoerd bij honden in een pension (Clinical Trial - Kennel Cough - AVMC WS009-07). Opvallend was dat daar bij een uitbraak van kennelhoest alle gevaccineerde honden ziek werden (18/18) en 'slechts' 19 van de 22 ongevaccineerde honden.

**Immuniteitsduur**

Naar de lengte van de immunititeit na vaccinatie zijn al verschillende (wetenschappelijke) onderzoeken gedaan; de meeste onderzoeken wijzen uit dat de immuniteitsduur na vaccinatie tegen parvo, hondenziekte, besmettelijke leverziekte en kattenziekte erg lang is, tot wel 7 jaar (en misschien nog wel langer, maar de onderzoeksduur is niet langer). Fabrikanten mogen deze resultaten echter niet overnemen in hun bijsluiters/registraties. Zij mogen alleen vermelden wat hun eigen
onderzoek met dat betreffende vaccin heeft uitgewezen. Aangezien dit soort onderzoeken kostbaar en langdurig zijn en de omstandigheden voor de dieren niet optimaal (ze moeten gedurende de proef afgezonderd van andere dieren worden gehuisvest) zal niet elke fabrikant zich hier voor lange tijd aan wagen.

Opvallend is wel dat alle onderzoeken wijzen op het belang van op het juiste tijdstip vaccineren; als een dier nog maternale antistoffen tegen een bepaalde ziekteverwekker heeft zal de vaccinatie niet werken, er worden dan geen (nieuwe) antistoffen aangemaakt.

### Table 1: Minimum Duration of Immunity for Canine Vaccines

<table>
<thead>
<tr>
<th>Vaccine</th>
<th>Minimum Duration of Immunity</th>
<th>Methods Used to Determine Immunity</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>CORE VACCINES</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canine Distemper Virus (CDV)</td>
<td>7 yrs / 15 yrs</td>
<td>challenge / serology</td>
</tr>
<tr>
<td>Rockbom Strain</td>
<td>5 yrs / 9 yrs</td>
<td>challenge / serology</td>
</tr>
<tr>
<td>Onderstepoort Strain</td>
<td>5 yrs / 9 yrs</td>
<td>challenge / serology</td>
</tr>
<tr>
<td>Canine Adenovirus-2 (CAV-2)</td>
<td>7 yrs / 9 yrs</td>
<td>challenge-CAV-1 / serology</td>
</tr>
<tr>
<td>Canine Parvovirus-2 (CAV-2)</td>
<td>7 yrs</td>
<td>challenge / serology</td>
</tr>
<tr>
<td>Canine Rabies</td>
<td>3 yrs / 7 yrs</td>
<td>challenge / serology</td>
</tr>
<tr>
<td><strong>NON-CORE VACCINES</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canine parainfluenza</td>
<td>3 yrs.</td>
<td>Serology</td>
</tr>
<tr>
<td>Bordetella bronchiseptica</td>
<td>9 months</td>
<td>Challenge</td>
</tr>
<tr>
<td>Leptospira interrogans ser. canicola</td>
<td>?</td>
<td>Challenge</td>
</tr>
<tr>
<td>Leptospira icterohaemorrhagiac</td>
<td>?</td>
<td>Challenge</td>
</tr>
<tr>
<td>Borrelia burgdorfiens</td>
<td>1 yr.</td>
<td>Challenge</td>
</tr>
<tr>
<td>Giardia</td>
<td>?</td>
<td>Challenge</td>
</tr>
<tr>
<td>Canine Coronavirus</td>
<td>Lifetime (whether vaccinated or not vaccinated)</td>
<td>Challenge / serology</td>
</tr>
</tbody>
</table>

"De minimum immuniteitsduur betekent niet dat alle gevaccineerde honden immuun zijn gedurende deze periode, maar het betekent ook niet dat de immuniteitsduur niet nog langer zou kunnen zijn (bijvoorbeeld levenslang). Het percentage gevaccineerde honden dat beschermd was tegen klinische verschijnselen na challenge met hondenziekte, parvo en HCC bedroeg in deze onderzoeken meer dan 95%.

Ter ondersteuning van bovenstaand verhaal willen we hier nog even de 11-jarige Labrador Lotte (een van onze cliënten) vermelden; zij heeft alleen de pupvaccinaties bij de fokker gekregen en is daarna bij de eigenaar nooit meer gevaccineerd. Zij is vorig jaar d.m.v. de Vaccicheck gecontroleerd en bleek van hondenziekte, HCC en parvo ruim voldoende hoge titers te hebben.

**Effectiviteit van vaccinatie**

Er zijn steeds meer mensen die twijfelen over de effectiviteit van vaccinaties. Viera Scheibner is in haar boek "Vaccinatie" bijna alle tot dan toe bestaande onderzoeken naar de werking van (humane) vaccinaties opnieuw gaan bekijken en komt tot de conclusie dat er bij veel ziektes op het moment dat er wordt begonnen met vaccineren al een daling van het aantal ziektegevallen is ingezet. Het lijkt dan alsof de afname van ziektegevallen te danken is aan het vaccineren, maar in werkelijkheid was die trend al ingezet. Deze trend kan ook aan de gang zijn bij de veterinaire ziektes. Hier hebben wij echter geen documentatie over kunnen vinden.

Dat de statistieken een nog verdere daling van het aantal ziektegevallen na vaccinatie laten zien, lijkt opzienbarend, maar in de periodes tussen epidemieën in (die gemiddeld om de 4 tot 7 jaar plaatsvinden), daalt het aantal ziektegevallen al gestaag volgens het natuurlijk verloop. Dr. Isaac Golden maakt dit aan de hand van tabellen in zijn boek "Vaccination & Homoeoprophylaxis" inzichtelijk.

Een aantal voorbeelden:

Het aantal sterfgevallen in Engeland per 1.000.000 kinderen onder de 15 jaar ten gevolge van kinkhoest is sinds 1860 van 1450 gevallen gestaag gezakt tot enkele tientallen in eind jaren ’40; een daling van circa 86%. Toen pas deed immunisatie tegen deze ziekte haar intrede.
In Nederland is het aantal sterfgevallen tengevolge van polio tijdens epidemieën van 222 gevallen in 1943 gedaald naar 71 in 1956 (afname van 62%) terwijl het aantal ziektegevallen zelf rond de 2000 bleef schommelen; de ziekte nam dus een minder agressieve vorm aan.

Kijken we naar dieren, dan valt op dat dieren in de natuur vaak alleen maar ‘dragers’ zijn van ziektes die vaak wel gevaarlijk zijn voor in gevangenschap gehouden dieren, zoals het wilde zwijn met het varkenspestvirus of de bizon met Abortus Bang. Met de Afrikaanse paarden pest is het hetzelfde verhaal: in het wild levende zebra’s zijn niet of veel minder vatbaar dan (tamme) paarden. Dit zou heel goed mogelijk kunnen zijn vanwege het feit dat zij niet belast zijn door medicatie en/of vaccinaties en daarnaast vaak besmettingen hebben doorgemaakt en elke keer weer zelfgenezing hebben gerealiseerd. Door al die ‘ervaringen’ met en ‘informatie’ over allerlei ziektes gaat het immuunsysteem op een onbekende indringer milder maar wel effectiever reageren.

Hoewel we ons realiseren dat het volgende voorbeeld niet gaat over een ziekteverwekkend virus o.i.d., willen we het toch noemen: wormbesmetting onder wilde paarden: bijna alle jaarlingen van de in het wild levende Konik paarden zien er slecht uit. Het is niet zo zeer dat ze ziek zijn, maar ze beschikken over een slechte conditie. Geconstateerd is dat ze ernstige wormei besmettingen hebben. Maar de volwassenen paarden (dus ooit jaarlingen geweest) zien er perfect uit en ze hebben geen of weinig wormeieren. Door dit proces van ‘ziektes doormaken’ ontwikkelen deze paarden een steeds evenwichtiger en effectiever afweersysteem. Met andere woorden: het lichaam raakt niet in paniek door een indringer maar gebruikt zijn afweerervaringen om ongewenste gasten effectief te elimineren.

Alternatieve voor (over-)vaccinatie
Om tot een weloverwogen keuze te kunnen komen over wel, minder of niet vaccineren kunnen de volgende punten een leidraad vormen/houvast geven:

• Het risico van infectie (sommige ziektes komen in Nederland nauwelijks nog voor);
• De gevolgen van de ziekte;
• De beschikbaarheid van een veilig en effectief vaccin;
• De immuniteitsduur van het vaccin;
• En, niet te vergeten, je eigen gevoel. Wanneer je je kiest voor over- of geen vaccinatie, waarvoor je besluit om niet te vaccineren maar vervolgens slaaploze nachten hebt vanwege de zorg of je dier wel of niet een ziekte zal opleiden lijkt dat misschien wel gezondheidswinst voor het dier, maar niet voor de ‘baasje’ en daardoor uiteindelijk ook niet voor het dier.

Daarnaast moet je, wanneer je keiest voor niet vaccineren kunnen leven met het feit dat je dier een ziekte op kan lopen, ernstig ziek zou kunnen worden en in sommige gevallen zelfs ten gevolge hiervan kan overlijden. Maar datzelfde geldt natuurlijk ook bij de keuze voor wel vaccineren, ook dan kan een dier ernstig ziek worden, chronische klachten gaan ontwikkelen of zelfs komen te overlijden. Opvallend is dat veel eigenaren beter met deze laatste keuze lijken te kunnen omgaan, dan met de eerste. Misschien komt dit doordat eigenaren bij de keuze voor wel vaccineren meer het gevoel hebben dat zij er alles aan hebben gedaan om hun dier zo optimaal mogelijk te beschermen. Of spelen derden hier een grote rol in; er zal niet snel gezegd worden: “Had je je dier maar niet moeten vaccineren”, terwijl het omgekeerde “Had je je dier maar moeten vaccineren” wel snel geopperd wordt.

Wel vaccineren, maar niet teveel
Wanneer je besluit om wel te vaccineren, maar dit met beleid wilt doen dan zijn er diverse mogelijkheden. Je kunt de beslissing af laten hangen van een titertest of je kiest voor een standaard of aangepast protocol (eventueel in combinatie met een titertest).

Standaard protocol
Je kunt het protocol van de fabrikant aanhouden. Kies in dat geval dan bij voorkeur voor een fabrikant die, waar mogelijk, een herhalingsfrequentie van meerdere jaren aanhoudt.
Zoals hiervoor al gezegd, ondanks dat diverse onderzoeken uitwijzen dat de immuniteitsduur voor bepaalde ziektes veel langer is dan de geadviseerde herhalingsfrequentie van de fabrikant (soms zelfs levenslang) mag de fabrikant deze onderzoeken niet gebruiken; die mag in de bijsluiter alleen vermelden wat er d.m.v. eigen onderzoek met dat betreffende vaccin is aangetoond. En omdat (jaren)langlopende studies enorm kostbaar zijn, wordt dat niet altijd gedaan of men is nog niet zo ver.

Jean Dodds waarschuwt (in een interview in 2009 in NATURAL HORSE Magazine (Volume 11, Issue 2)) voor teveel vaccineren; als een dier beschermd is kun je hem niet nog meer beschermd maken. Wel verhoog je de kans dat het dier een hypergevoeligheid ontwikkelt voor bepaalde vaccin componenten, met alle gevolgen van dien.

**Aangepast protocol**: in overleg met de dierenarts.

Volgens dierenarts Tannetje Koning zijn de meeste honden na de standaard pupvaccinaties en een herhalingsvaccinatie na een jaar voor de 3 ‘core’ ziektes hondenziekte, HCC en parvo in de meeste gevallen levenslang beschermd; onderzoeken van o.a. Dr. Schultz bevestigen dit ook. Over de herhalingsfrequentie bij katten zijn de geleerden het nog niet eens; er wordt relatief weinig onderzoek naar katten gedaan. Maar over een herhalingsfrequentie van 3 jaar zijn de meeste onderzoekers het wel eens. Deze 3 jaar is dan echt de ondergrens, we zijn een onderzoek tegengekomen waarbij katten zelfs 7,5 jaar na vaccinatie nog een hoge kattenziekte-titer hadden, de titers voor niesziekte waren in dit onderzoek 3-4 jaar na vaccinatie ook nog voldoende hoog.\(^7,11\)

Over een aangepast vaccinatieprotocol voor paarden is erg weinig betrouwbare documentatie te vinden. Er zijn wel paardeneigenaren die minder of niet vaccineren, maar zij zijn in de minderheid. Vaak ook noodgedwongen; omdat veel paarden in pensionstalling staan, wordt het standaard protocol van de stal (vaak verplicht) aangehouden. Bij deelname aan wedstrijden geldt ook een vaccinatieplicht.
**VACCINS ALGEMEEN**

In dit hoofdstuk geven wij een overzicht van alle vaccins die op 01-11-2011 (voor zover bij ons bekend) in de handel waren. Het hoofdstuk is alfabetisch ingedeeld op diersoort. Dit hoofdstuk is bedoeld om de (eventuele) verschillen tussen de verschillende vaccins inzichtelijk te maken.

We beginnen bij elke diersoort met een schematisch overzicht waarin in 1 oogopslag te zien is uit welke bestanddelen de verschillende (combi)vaccins bestaan. Daarna noemen wij per ziekte de beschikbare vaccins met een beknopte weergave van de meest belangrijke informatie uit bijsluiter en/of registratie en daar waar wij het nodig vonden voorzien van ons commentaar. De combinatievaccins vermelden wij na de opsomming van alle enkelvoudige vaccins.

Aan het eind van dit hoofdstuk is een paragraaf opgenomen met daarin een overzicht welke adjuvantia en hulpstoffen er gebruikt worden in de diverse vaccins gevolgd door een korte (alfabetische) uitleg daarvan.

Opvallend is dat in de bijsluiters meestal niet wordt vermeld welke hulpstoffen en adjuvantia er gebruik zijn, terwijl dit in de registraties bij het CBG (College ter Beoordeling van Geneesmiddelen) wel bij de meeste vaccins uitgebreid vermeld wordt.

Bij het vaccineren van jonge dieren die nog door de moeder gezoogd worden moet er rekening gehouden worden dat een vaccin door de aanwezige maternale antistoffen niet aan zal slaan. Als een dier voldoende antistoffen bezit, heeft vaccineren geen zin maar vanwege het feit dat de maternale antistoffen bij honden vanaf een leeftijd van ongeveer 6 weken oud, bij katten vanaf 12 weken oud en bij paarden vanaf een half jaar beginnen af te nemen wordt er door de fabrikanten voor de zekerheid geadviseerd om dan al te beginnen met vaccineren tegen bepaalde ziektes. De meeste fabrikanten waarschuwen in hun bijsluiters overigens wel voor de invloed van die maternale antilichamen op de vaccinaties (zowel bij hond, kat als paard). Daarnaast vermelden de meeste fabrikanten dat alleen gezonde dieren gevaccineerd mogen worden.
Vaccins honden, overzichtsschema per fabrikant:

<table>
<thead>
<tr>
<th>Fabrikant</th>
<th>Hondenziekte</th>
<th>Respiratoire aandoeningen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Levend geattenueerd</td>
<td>Levend geattenueerd</td>
</tr>
<tr>
<td>Intervet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nobivac DHP</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>Nobivac DHPPi</td>
<td>● ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>Nobivac KC</td>
<td>● ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>Nobivac Lepto</td>
<td>● ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>Nobivac L4</td>
<td>● ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>Nobivac L + DHPPi</td>
<td>● ● ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>Nobivac L + P</td>
<td>● ● ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>Nobivac Parvo-C</td>
<td>● ● ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>Nobivac Pio</td>
<td>● ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>Nobivac Pi</td>
<td>● ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>Nobivac Puppy DP</td>
<td>● ● ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>Nobivac Rabies</td>
<td>● ● ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>Nobivac RL</td>
<td>● ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>Quantum Dog DA2PPi/CVL</td>
<td>● ● ● ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>Quantum Dog Lepto</td>
<td>● ● ● ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>Merial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eurican DHP</td>
<td>● ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>Eurican DHPPi-L</td>
<td>● ● ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>Eurican Herpes 205</td>
<td>● ● ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>Eurican L</td>
<td>● ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>Eurican P</td>
<td>● ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>Eurican Pio</td>
<td>● ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>Eurican P-L</td>
<td>● ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>Eurican Pneumo</td>
<td>● ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>Eurican Primo</td>
<td>● ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>Rabisin</td>
<td>● ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>Pfizer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vanguard 7</td>
<td>● ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>Vanguard CPV</td>
<td>● ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>Vanguard CPV-Lepto</td>
<td>● ● ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>Vanguard Lepto</td>
<td>● ● ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>Vanguard PUP</td>
<td>● ● ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>Vanguard R</td>
<td>● ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>Virbac</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canigen DHA2PPi-L</td>
<td>● ● ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>Canigen L</td>
<td>● ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>Canigen P</td>
<td>● ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>Canigen Puppy 2b</td>
<td>● ● ● ● ● ●</td>
<td></td>
</tr>
</tbody>
</table>

49
**Vaccins honden, overzicht per ziekte**

**Canine herpes virus**
Er is slechts 1 fabrikant (Merial) die een vaccin tegen het CHV levert. Dat zegt volgens ons al iets over de werkzaamheid of noodzaak om hier tegen te vaccineren.

<table>
<thead>
<tr>
<th>Eurcan Herpes 205 (Merial)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Werkzame bestanddelen</strong></td>
</tr>
<tr>
<td>Canine Herpesvirus antigenen (stam F205)</td>
</tr>
<tr>
<td><strong>Adjuvantia/hulpstoffen</strong></td>
</tr>
<tr>
<td>Lichte paraffine olie 224,8 tot 244,1 mg</td>
</tr>
<tr>
<td>Sucrose, Sorbitol, Dextran 40, Caseïne hydrolysaat, Collageen hydrolysaat, Zouten, Polyoxyethyleen vetzuren, Ether van vetalcoholen en van polyolen, Triethanolamine</td>
</tr>
<tr>
<td><strong>Dosering</strong></td>
</tr>
<tr>
<td>1e injectie: tijdens de loopsheid ofwel 7-10 dagen na de vermoedelijke dekdatum.</td>
</tr>
<tr>
<td>2e injectie: 1-2 weken vóór de verwachte werpdatum.</td>
</tr>
<tr>
<td>Hervaccinatie: gedurende elke dracht, volgens hetzelfde schema.</td>
</tr>
<tr>
<td><strong>Toediening</strong></td>
</tr>
<tr>
<td>Subcutaan</td>
</tr>
<tr>
<td><strong>Bijwerkingen</strong></td>
</tr>
<tr>
<td>Voorbijgaand oedeem op de injectieplaats (tot 10% van de dieren). Deze reacties verdwijnen gewoonlijk binnen 1 week.</td>
</tr>
<tr>
<td>Een overgevoeligheidsreactie kan optreden (zeldzaam).</td>
</tr>
</tbody>
</table>

**Coronavirus**
Er is slechts 1 fabrikant (Intervet) die een combinatievaccin levert waar het coronavirus vaccin in voorkomt (Quantum Dog DA2PPi/CVL). Over de doeltreffendheid en nut van het vaccineren tegen Corona bestaat onder de verschillende dierenartsen grote twijfel. De immuniteitsduur zou 1 jaar bedragen.

Het Corona bestandsdeel bestaat uit geïnactiveerd Feline Coronavirus (stam FEC-SAH)

**Beschikbaar vaccin:** Zie hoofdstuk combinatievaccins blz. 63.

**Hondenziekte (Distemper/ ziekte van Carré)**
Het hondenziektevaccin is niet los verkrijgbaar. Er is 1 combinatievaccin dat werkzaam is tegen 2 ziektes (hondenziekte met parvo), de andere vaccins zijn werkzaam tegen 4, 5 of zelfs 6 ziektes. De geadviseerde herhalingsfrequentie loopt uiteen (afhankelijk van de fabrikant) van 1 tot 3 jaar, al dan niet na een booster op 1-jarige leeftijd.

Het hondenziekte bestanddeel bestaat bij alle vaccins uit een levend, geattenuerde weefselweekvaccin Canine Distemper Virus (CDV), de stam verschilt: stam Onderstepoort (Nobivac en Merial), N-CDV (Vanguard) of Distemperoid stam (Quantumdog).

**Beschikbare vaccins:** zie hoofdstuk combinatievaccins vanaf blz. 59.
Kennelhoest

Tegen respiratoire aandoeningen zijn verschillende vaccins in omloop, vaak gecombineerd met andere vaccins. De meeste fabrikanten adviseren een herhalingsfrequentie van 1 jaar. Omperkelyk is dat bij het Merial Eurican Pneumo vaccin vermeld wordt: “Start van de immunitéit: 2 weken na de basisvaccinatie. Duur van de immunitéit: 3 maanden na basisvaccinatie (op basis van serologische gegevens).” Dus dat zou betekenen dat deze vaccinatie slechts 2,5 maanden werkt! En daarnaast worden in dit vaccin ook nog eens hulpstoffen gebruikt die ernstig ter discussie staan (zie hoofdstuk hulpstoffen).

Er zijn kennelhoestvaccins bestaande uit alleen het parainfluenza virus, maar ook i.c.m. de Bordetella bronchiseptica bacterie of het Adenovirus type 2. Er zijn geen vaccins waar deze alle 3 tegelijk in voorkomen.

<table>
<thead>
<tr>
<th>Eurican Pneumo (Merial)</th>
<th>Nobivac KC (Intervet)</th>
<th>Nobivac PI (Intervet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 weken en ouder</td>
<td>Geen leeftijdsgrens</td>
<td>8 weken en ouder</td>
</tr>
</tbody>
</table>

**Werkzame bestanddelen**

<table>
<thead>
<tr>
<th>Geïnactiveerd:</th>
<th>Levend:</th>
<th>Levend geattenueerd:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bordetella bronchiseptica</td>
<td>Bordetella bronchiseptica bacteriën</td>
<td>Canine Parainfluenza virus</td>
</tr>
<tr>
<td>Parainfluenza type 2 virus</td>
<td>Canine Parainfluenza virus</td>
<td></td>
</tr>
<tr>
<td>Adjuvants: Al+++ (als hydroxide)</td>
<td>Gelatine-gebaseerde stabilisator, Natriumchloride, Fosfaatbuffer, Water voor injectie</td>
<td>Vaccin: Sorbitol (E420), Gelatine (E411), Pancreas caseinhydrolysaat, Dinatriumwaterstofosfaatdihydraat (E339), Water voor injectie</td>
</tr>
<tr>
<td>Hulpstoffen: Thiomersal, Formaldehyde</td>
<td>Gelatine</td>
<td>Suspendedervloeistof: Dinatriumwaterstofosfaatdihydraat (E339), Kaliumdwaterstoffosfaat, Water voor injectie</td>
</tr>
</tbody>
</table>

**Dosering**

| 2-voudige basisvaccinatie, met een interval van 2-3 weken. Hervaccinatie: | Jaarlijks na enkelvoudige toediening. | Jaarlijks na 2-voudige basisvaccinatie met een interval van 2-4 weken (vanaf 12 weken oud enkelvoudige vaccinatie) |
| 14 dagen voór contact met een grote groep honden of voór de fokperiode. Immuniteitsduur: 3 maanden na basisvaccinatie. | Ongevacineerde honden ten minste 3 weken voor periode's van verwacht verhoogd risico vaccineren (bv. opname in pension). | |

**Toediening**

<table>
<thead>
<tr>
<th>Subcutaan</th>
<th>Intranasaal</th>
<th>Subcutaan</th>
</tr>
</thead>
</table>

**Bijwerkingen**

| Aluminiumhydroxide kan op de injectieplaats een voorbijgaande lokale entreactie (± 3 cm) veroorzaken, die meestal binnen 2 weken verdwijnt. | Voorbijgaande lichte oog- en neusuitvloeiing vanaf de dag na vaccinatie, soms met hijgen, niezen en/of hoesten, met name in zeer jonge gevoelige pups. Klachten kunnen tot max. 4 weken aanhouden (soms). Bij dieren met ernstigere symptomen kan een behandeling met antibiotica geïndiceerd zijn. | Een diffuse zwelling, tot 5 mm in diameter op de injectieplaats. Soms kan deze zwelling hard en pijnlijk zijn en gedurende maximaal 3 dagen na vaccinatie blijven bestaan. |
| Tijdelijke verhoging van de lichaamstemperatuur en/of tijdelijke overgevoeligheidsreactie (anafylaxis) zoals lethargie, oedeem in de kop, pruritis, dyspneu, braken, diarree of neervallen vlak na vaccinatie (uitzonderlijk). | | |

**Waarschuwingen**

| Kan gebruikt worden tijdens de dracht. Niet aan zware fysieke inspanning blootstellen alvorens volledige immunitéit is verkregen (aanbevolen). | Kan tijdens de dracht worden gebruikt. De Bordetella bronchiseptica vaccinstam 6 kan weken lang uitgescheiden worden en de canine parainfluenza vaccinstam enkele dagen na vaccinatie. Immuundeficiënte personen dienen elk contact met het vaccin en gevacineerde hondens tot 6 weken na vaccinatie te vermijden. De levende vaccincomponenten kunnen verspreiden naar andere dieren. Katten, varkens en ongevacineerde honden kunnen reageren op de vaccinstam met | |
Leervzakte (HCC/infectieuze hepatitis)
HCC is niet als los vaccin verkrijgbaar, alleen in combinatie met andere vaccins. De kleinst mogelijke combinatie is met hondenziekte en parvo. Ook hier is een groot verschil in de geadviseerde herhalingsfrequentie: van jaarlijks tot 4-jaarlijks.

Het HCC bestandeel bestaat bij alle vaccins uit een levend, geattenuerend weefselkweekvaccin, Canine Adenovirus type 2, stam Manhattan LPV3 of Ditchfield (Quantumdog DA2PPi/CVL).

Beschikbare vaccins: zie hoofdstuk combinatievaccins vanaf blz. 59.

Piroplasmose
Is als los vaccin leverbaar. Over de doeltreffendheid bestaan onder dierenartsen grote twijfels die blijkbaar door de beide fabrikanten gedeeld worden als je de registraties leest. Eurican Piro vermeldt daarin het volgende: "Actieve immunisatie van honden vanaf de leeftijd van 5 maanden ter vermindering van de ernst van ziekteverschijnselen, veroorzaakt door *Babesia canis* (piroplasmose)." Na enting volgens voorschrift is een immuniteit gedurende 3 weken aannemelijk gemaakt.” Nobivac Piro zegt iets soortgelijks: "Actieve immunisatie van honden vanaf de leeftijd van 6 maanden tegen Babesia canis, ter vermindering van de ernst van de klinische verschijnselen die optreden bij acute babesiosis (B. canis) en anemie, vastgesteld door bepaling van het Packed Cell Volume (PCV).”

<table>
<thead>
<tr>
<th><strong>Eurican Piro</strong> (Merial)</th>
<th><strong>Nobivac Piro</strong> (Intervet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Werkzame bestanddelen</td>
<td>Werkzame bestanddelen</td>
</tr>
<tr>
<td>Geïnactiveerde antigenen van <em>Babesia canis</em>, stam Villeurbanne</td>
<td>Geïnactiveerde antigenen van <em>Babesia canis</em>, stam Villeurbanne</td>
</tr>
<tr>
<td>Adjuvantia/hulpstoffen</td>
<td>Adjuvantia: 250 (225-275) µg saponine</td>
</tr>
<tr>
<td>Waterige saponine oplossing, Lactose, Water voor injectie</td>
<td>Solvens: Natriumwaterstoffosfaat dihydroaat, Dinatriumfoslfaat dihydroaat, Water voor injectie</td>
</tr>
<tr>
<td>Doseringsplan</td>
<td>Doseringsplan</td>
</tr>
<tr>
<td>2-voudige vaccinatie met een interval van 3-4 weken. Na enting volgens voorschrift is een immunititeit gedurende 3 weken aannemelijk gemaakt.</td>
<td>Halfjaarlijks na 2-voudige basisvaccinatie met een interval van 3-6 weken</td>
</tr>
<tr>
<td>Toediening</td>
<td>Toediening</td>
</tr>
<tr>
<td>Subcutaan</td>
<td>Subcutaan</td>
</tr>
<tr>
<td>Bijwerkingen</td>
<td>Bijwerkingen</td>
</tr>
<tr>
<td>Een (lokale) eventuele reacties kunnen voorkomen.</td>
<td>Voorbijgaande (max. 4 dagen) diffuse zwelling en/of een verharde knobbeltje, vergezeld van pijn, op injectieplaats. Na 2e vaccindosis kunnen de reacties gedurende 14 dagen aanhouden (zeldzaam).</td>
</tr>
<tr>
<td>Tijdelijke verhogen van de lichaamstemperatuur en/of tijdelijke overgevoeligheidsreactie (anafylaxis) met symptomen zoals lethargie, oedeem in de kop, pruritis, dyspneu, braken, diarree of neervallen vlak na de vaccinatie (uitzonderlijk).</td>
<td>Tijdelijke (2-3 dagen) systemische verschijnselen, zoals sloomheid en een verminderde eetlust, in sommige gevallen vergezeld van koorts en een stijve gang mogelijk.</td>
</tr>
</tbody>
</table>
**Waarschuwingen**


**Klinische Babesiosis** veroorzaakt een specifiek immunodepressief beeld, dat ongeveer 6 weken aanhoudt. Daarom minimaal 8 weken na het begin van de ziekte vaccineren. Dezelfde waarschuwing geldt voor iedere andere ziekte of behandeling die mogelijk immunodeficietie veroorzaakt bij honden.


**Rabiës**

Rabiës is als los vaccin verkrijgbaar en i.c.m. het leptovaccin (Nobivac RL). Bij meerdere fabrikanten wordt een herhalingsvaccinatie na 3 jaar geadviseerd, maar er zijn nog steeds vaccins in de handel waarbij jaarlijkse herhaling wordt geadviseerd.

Het Rabiës bestanddeel bestaat bij alle vaccins uit een geïnactiveerd rabiësvirus, de stam verschill per fabrikant.

**Beschikbare vaccins:** (zie ook hoofdstuk combinatievaccins blz. 64)

<table>
<thead>
<tr>
<th>Nobivac Rabiës (Intervet)</th>
<th>Rabisin (Merial)</th>
<th>Vanguard R (Pfizer)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 maand en ouder</td>
<td>3 maand en ouder</td>
<td>12 weken en ouder</td>
</tr>
</tbody>
</table>

**Werkzame bestanddelen**

<table>
<thead>
<tr>
<th>Nobivac Rabiës (Intervet)</th>
<th>Rabisin (Merial)</th>
<th>Vanguard R (Pfizer)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geïnactiveerd:</td>
<td>Geïnactiveerd:</td>
<td>Geïnactiveerd:</td>
</tr>
<tr>
<td>Rabiësvirus, stam Pasteur RIV</td>
<td>Glycoproteïnen van het rabiësvirus (stam GS-57/Wistar)</td>
<td>Rabiësvirus, stam SAD Vnukovo-32</td>
</tr>
</tbody>
</table>

**Adjuvantia/hulpstoffen**

<table>
<thead>
<tr>
<th>Nobivac Rabiës (Intervet)</th>
<th>Rabisin (Merial)</th>
<th>Vanguard R (Pfizer)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2% aluminiumfosfaat: 0,15 ml</td>
<td>Aluminiumhydroxide (als Al⁺³) 1,7 mg, GMEM Medium, Water voor injectie</td>
<td>Hulpstof: Thiomersal 0,01%, Aluminium hydroxide 2,0 mg (als 2% aluminium hydroxide gel) Adjuvanta: % aluminiumfosfaat: 0,15 ml</td>
</tr>
</tbody>
</table>

**Dosering**

<table>
<thead>
<tr>
<th>Nobivac Rabiës (Intervet)</th>
<th>Rabisin (Merial)</th>
<th>Vanguard R (Pfizer)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-Jaarlijks na enkelvoudige basisvaccinatie</td>
<td>Jaarlijks na enkelvoudige basisvaccinatie</td>
<td>2-Jaarlijks na enkelvoudige basisvaccinatie en booster na 1 jaar</td>
</tr>
</tbody>
</table>

**Toediening**

<table>
<thead>
<tr>
<th>Nobivac Rabiës (Intervet)</th>
<th>Rabisin (Merial)</th>
<th>Vanguard R (Pfizer)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subcutaan of intramusculair</td>
<td>Subcutaan</td>
<td>Subcutaan of intramusculair</td>
</tr>
</tbody>
</table>

**Bijwerkingen**

<table>
<thead>
<tr>
<th>Nobivac Rabiës (Intervet)</th>
<th>Rabisin (Merial)</th>
<th>Vanguard R (Pfizer)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lokale reactie of een milde voorbijgaande overgevoeligheidsreactie (mogelijk).</td>
<td>Een lokale reactie kan voorkomen.</td>
<td>Voorbijgaande zwelling op de injectieplaats met max. diameter tot 7 mm en (zeldzaam) een licht</td>
</tr>
</tbody>
</table>
Nobivac Rabiës  
(Intervet)

Rabisin  
(Merial)

Vanguard R  
(Pfizer)

Tijdelijke verhoging van lichaamstemperatuur en/of tijdelijke overgevoeligheidsreactie (anafylaxis) met symptomen zoals lethargie, oedeem aan de kop, pruritis, dyspneu, braken, diarree of neervallen vlak na vaccinatie (uitzonderlijk).

Waarschuwingen

Gebruik tijdens dracht of lactatie:
Proeven hebben geen negatieve effecten aangetoond.

Het vaccin is niet uitgebreid getest bij lacterende dieren. Uit de beperkt beschikbare gegevens blijkt echter dat toediening van het vaccin aan lacterende dieren niet gepaard zal gaan met een toename van het aantal bijwerkingen.

Opmerking: er wordt blijkbaar niet gekeken naar de invloed van het vaccin op de zogende pups.

Ziekte van Weil

Dit vaccin is zowel los als in combinaties met andere vaccins verkrijgbaar.

Opvallend is dat er in de meeste vaccins maar 2 geïnactiveerde serotypen gebruikt worden: Leptospira interrogans canicola en de Leptospira icterohaemorrhagiae terwijl er wel 12 soorten zijn waar honden ziek van kunnen worden. Sinds 16-07-2012 is het vaccin Nobivac L4 op de markt, dit vaccin bevat naast de 2 hiervoor genoemde nog de serotypen: Australis Bratislava en Grippotyphosa Dadas.

In Zuid-Duitsland, Italië en België zijn er bloedonderzoeken bij honden gedaan naar welke antilichamen er tegen bepaalde serotypen aanwezig zijn 1, 3, 5, 6, 13. Uit deze onderzoeken blijkt dat andere leptospirose bacteriën vaker voorkomen dan degene die in de vaccins zitten. Dat kan ook verklaren waarom een hond die gevacineerd is toch leptospirose kan krijgen.

En dat maakt het minder zinvol om te gaan vaccineren met deze entstof. Het lastige is alleen dat het niet zeker is of dit onderzoek representatief is voor Nederland.

Opvallend is verder dat alle fabrikanten in enigszins verschillende bewoordingen vermelden dat vaccineren tegen leptospirose (veroorzaakt door leptospira interrogans, serovars canicola en icterohaemorrhagiae) niet garandeert dat het dier geen leptospirose op zal lopen:
- Actieve immunisatie ter vermindering van leptospirose (Nobivac Lepto, Eurican L, Canigen L).
- Partiële actieve immunisatie tegen leptospirosis (Vanguard Lepto).
- Voor de actieve immunisatie van honden voor de preventie van sterfte en de reductie van klinische ziekteverschijnselen (Quantum Dog Lepto).

Met andere woorden: de werkzaamheid van deze vaccins is matig, zeker als je de beperkte werkzaamheidsduur in ogenschouw neemt.

Door 1 fabrikant (Quantum Dog) wordt een tipje van de sluier opgelicht hoe we de tekst van de bijsluiter zouden kunnen lezen waar het gaat om de frequentie van de bijwerkingen:
"In uitzonderlijke gevallen kan diarree vastgesteld worden na de vaccinatie; na intramusculaire vaccinatie werd er een enkel geval (1%) van voorbijgaande (1-2 dagen durende) verlamming vastgesteld."

Dus 'een enkel geval' wordt blijkbaar minder vaak waargenomen dan uitzonderlijke gevallen, wat aangeeft dat uitzonderlijke gevallen meer dan 1% zullen bedragen. Dat lijken ons behoorlijke aantallen en geeft volgens ons ook aan dat deze vaccinatie voor behoorlijk wat bijwerkingen kan zorgen (wat de praktijk ook uitwijst).

Opvallend is dat over het algemeen niet vaccineren van mensen tegen de ziekte van Weil het volgende te vinden is: "Hoewel er in sommige landen een vaccin bestaat, wordt dat in Europa niet toegepast omdat het door de grote verscheidenheid in typen maar gedeeltelijk werkt en jaarlijks moet worden toegediend. Vaccin is in Nederland voor mensen niet toegelaten. "(voor honden wel)

Bron: Nederlands Centrum voor beroepsziekten
### Ziekte van Weil; beschikbare vaccins:
(zie ook hoofdstuk combinatievaccins vanaf blz. 61)

<table>
<thead>
<tr>
<th>Canigen L (Virbac)</th>
<th>Eurican L (Merial)</th>
<th>Nobivac L4 (Intervet)</th>
<th>Nobivac Lepto (Intervet)</th>
<th>Vanguard Lepto (Pfizer)</th>
<th>Quantum Dog Lepto (Intervet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 weken en ouder</td>
<td>9 weken en ouder</td>
<td>6* weken en ouder</td>
<td>8 weken en ouder</td>
<td>9 weken en ouder</td>
<td>6 weken en ouder</td>
</tr>
</tbody>
</table>

#### Werkzame bestanddelen

<table>
<thead>
<tr>
<th>Canigen L (Virbac)</th>
<th>Eurican L (Merial)</th>
<th>Nobivac L4 (Intervet)</th>
<th>Nobivac Lepto (Intervet)</th>
<th>Vanguard Lepto (Pfizer)</th>
<th>Quantum Dog Lepto (Intervet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geïnactiveerd:</td>
<td>Leptospira interroga:</td>
<td>Canicol</td>
<td>Leptospira interroga:</td>
<td>Leptospira interroga:</td>
<td>Leptospira interroga:</td>
</tr>
<tr>
<td>serovar canicola</td>
<td>serovar canicola:</td>
<td></td>
<td>serovar canicola:</td>
<td>serovar canicola:</td>
<td>serovar canicola:</td>
</tr>
<tr>
<td>serovar icterohaemorrhagia</td>
<td>serovar icterohaemorrhagia</td>
<td></td>
<td>serovar icterohaemorrhagia</td>
<td>serovar icterohaemorrhagia</td>
<td>serovar icterohaemorrhagia</td>
</tr>
</tbody>
</table>

#### Adjuvantia/hulpstoffen

<table>
<thead>
<tr>
<th>Canigen L (Virbac)</th>
<th>Eurican L (Merial)</th>
<th>Nobivac L4 (Intervet)</th>
<th>Nobivac Lepto (Intervet)</th>
<th>Vanguard Lepto (Pfizer)</th>
<th>Quantum Dog Lepto (Intervet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thiomersal, Kaliumchloride, Natriumchloride, Monokalium fosfaat, Dinatriumfosfaat dihydroaat, Water voor injectie</td>
<td>Thiomersal, Natriumchloride Kaliumchloride, Dinatrium waterstoffsosfaat dihydroaat, Kaliumdiwaterstoffsosfaat, Water voor injectie</td>
<td>Thiomersal, Gemodificeerde Hartmann-oplossing (Natriumchloride, Kaliumchloride, Natrium-L-lactaat, Calciumchloride, Water voor injectie)</td>
<td>Thiomersal</td>
<td>Aluminiumhydroxide 1,63-2,21 mg, D-MEM (Anorganische zouten, Vitaminen, Aminozuren etc.)</td>
<td></td>
</tr>
</tbody>
</table>

#### Dosering

<table>
<thead>
<tr>
<th>Canigen L (Virbac)</th>
<th>Eurican L (Merial)</th>
<th>Nobivac L4 (Intervet)</th>
<th>Nobivac Lepto (Intervet)</th>
<th>Vanguard Lepto (Pfizer)</th>
<th>Quantum Dog Lepto (Intervet)</th>
</tr>
</thead>
</table>

#### Toediening

<table>
<thead>
<tr>
<th>Canigen L (Virbac)</th>
<th>Eurican L (Merial)</th>
<th>Nobivac L4 (Intervet)</th>
<th>Nobivac Lepto (Intervet)</th>
<th>Vanguard Lepto (Pfizer)</th>
<th>Quantum Dog Lepto (Intervet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subcutaan</td>
<td>Subcutaan of intramusculair</td>
<td>Subcutaan</td>
<td>Subcutaan</td>
<td>Subcutaan of intramusculair</td>
<td>Subcutaan of intramusculair</td>
</tr>
</tbody>
</table>

#### Bijwerkingen

<table>
<thead>
<tr>
<th>Canigen L (Virbac)</th>
<th>Eurican L (Merial)</th>
<th>Nobivac L4 (Intervet)</th>
<th>Nobivac Lepto (Intervet)</th>
<th>Vanguard Lepto (Pfizer)</th>
<th>Quantum Dog Lepto (Intervet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lokale entreactie; tijdelijke apathie (na eerste enting); braken.</td>
<td>Een geringe entreactie op de injectieplaats.</td>
<td>Kleine voorbijgaande zwelling (&lt; 4 cm), die in incidentele gevallen stevig aanvoelt en bij aanraking pijnlijk is op de plaats van injectie. Dergelijke zwellingen zullen verdwijnen of aanzienlijk slinken binnen een periode van 14 dagen na vaccinatie.</td>
<td>Diffuse zwelling, tot 5 mm in diameter, op de injectieplaats (max. 4 dagen). Soms kan deze zwelling hard en pijnlijk zijn, maar zal geleidelijk afnemen (binnen 2-3 weken).</td>
<td>Lokale, soms pijnlijke entreactie.</td>
<td>Milde (&lt;1 cm³), voorbijgaande, lokale zwelling op injectieplaats (incidenteel na intramusculaire vaccinatie). Deze verdwijnt volledig en zonder complicaties binnen max. 3 weken. Zwelling op de injectieplaats (gewoonlijk na 1e of 2e subcutane vaccinatie); deze pijnloze zwelling bedroeg tot 7,7 cm³ (4 cm diameter) na...</td>
</tr>
<tr>
<td>Canigen L (Virbac)</td>
<td>Eurican L (Merial)</td>
<td>Nobivac L4 (Intervet)</td>
<td>Nobivac Lepto (Intervet)</td>
<td>Vanguard Lepto (Pfizer)</td>
<td>Quantum Dog Lepto (Intervet)</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------------</td>
<td>-----------------------</td>
<td>------------------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td><strong>Waarschuwingen</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

De effecten van dit product bij toediening tijdens de dracht en lactatie zijn niet bekend.

Kan tijdens dracht en lactatie worden toegepast.

Kan tijdens de dracht worden gebruikt.

Kan tijdens de dracht worden gebruikt.

Niet gebruiken bij drachtige dieren.

Niet gebruiken bij drachtige of lacterende teven. Drachtige teven mogen niet in contact komen met recent gevacineerde dieren. Na basisvaccinatie: ten minste 7 dagen geïsoleerd blijven van mogelijke infectiebronnen om het risico op interferentie met immuunrespons te verminderen.

Tijdelijke verhoging van de lichaamstemperatuur en/of tijdelijke overgevoeligheidsreactie (anafylaxis) met symptomen zoals lethargie, oedeem in de kop, pruritis, dyspneu, braken, diarree of neervallen vlak na vaccinatie (uitzonderlijk).

Tijdelijke verhoging van de lichaamstemperatuur en/of tijdelijke overgevoeligheidsreactie (anafylaxis) met symptomen zoals lethargie, oedeem in de kop, pruritis, dyspneu, braken, diarree of neervallen vlak na vaccinatie (zeldzaam).

Milde en voorbijgaande toename van de lichaamstemperatuur kan een aantal dagen na vaccinatie voorkomen, waarbij sommige pups een lichte loomheid en/of verminderde eetlust laten zien. Voorbijgaande acute overgevoeligheidsreactie (anafylaxie) (incidenteel).

Voorbijgaande (1-2 dagen durende) verlamming na intramusculaire vaccinatie (een enkel geval (1%).

Overgevoeligheidsreacties (zelden).

Diarrée (uitzonderlijk)

Diarree (uitzonderlijk)

Voorbijgaande acute overgevoeligheidsreactie (anafylaxis) met symptomen zoals lethargie, oedeem in de kop, pruritis, dyspneu, braken, diarree of neervallen vlak na vaccinatie (zeldzaam).

Milde en voorbijgaande toename van de lichaamstemperatuur en/of tijdelijke overgevoeligheidsreactie (anafylaxis) met symptomen zoals lethargie, oedeem in de kop, pruritis, dyspneu, braken, diarree of neervallen vlak na vaccinatie (uitzonderlijk).

Tijdelijke verhoging van de lichaamstemperatuur en/of tijdelijke overgevoeligheidsreactie (anafylaxis) met symptomen zoals lethargie, oedeem in de kop, pruritis, dyspneu, braken, diarree of neervallen vlak na vaccinatie (zeldzaam).

De 1e vaccinatie en verdwen binnen 2 weken zonder complicaties. Ernstige zwelling (uitzonderlijk).

Overgevoeligheidsreacties (zelden).

Tenminste 10 dagen voor vaccinatie tegen maagdarmwormen behandelen (aanbevolen).

Na basisvaccinatie: ten minste 7 dagen geïsoleerd blijven van mogelijke infectiebronnen om het risico op interferentie met immuunrespons te verminderen.
Parvo
Er zijn meerdere fabrikanten die het parvovaccin los leveren. Sommige parvovaccins zijn speciaal bestemd voor hele jonge pups (vanaf 5 weken oud) en hebben een beperkte werkingstijd. Maar er zijn ook (losse) vaccins die geschikt zijn voor zowel jonge pups (vanaf 6 weken oud) als volwassen dieren waarvan de bescherming door de fabrikant tot 3 jaar lang wordt gegarandeerd (Nobivac Parvo-C). Parvo wordt vaak tegelijk met andere hondenziektes gevaccineerd, via de zogenaamde cocktailvaccins. Deze zijn bij bijna alle merken in verschillende combinties verkrijgbaar met groot verschil in de geadviseerde herhalingsfrequentie: van jaarlijks tot 4-jaarlijks.

Beschikbare vaccins: (zie ook hoofdstuk combinatievaccins vanaf blz. 59)

<table>
<thead>
<tr>
<th>Vaccindaad</th>
<th>Canigen P (Virbac)</th>
<th>Canigen Puppy 2b (Virbac)</th>
<th>Eurican P (Merial)</th>
<th>Eurican Primo (Merial)</th>
<th>Nobivac Parvo-C (Intervet)</th>
<th>Vanguard CPV (Pfizer)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 weken en ouder</td>
<td>12 weken en ouder</td>
<td>6 weken en ouder</td>
<td>6 weken en ouder</td>
<td>6 weken en ouder</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Werkzame bestanddelen
- Levend geattenueerd: Canine Parvovirus, stam CPV39
- Levend geattenueerd: Canine Parvovirus, stam 780916-115
- Levend geattenueerd: Canine Parvovirus, stam 780916-115
- Levend geattenueerd: Canine Parvovirus, stam 780916-115
- Levend geattenueerd: Canine Parvovirus, stam 154
- Levend geattenueerd: Canine Parvovirus stam NL-35-D

Adjuvanta/hulpstoffen
- Natriumchloride, Kaliumdiwaterstoffosfaat, Dinatriumfosfaat (watervrij), Water voor injectie
- Sucrose, Dextran, Sorbitol, Caseine pepton, Collageen hydrolysaa, Monokaliumfosfaat, Dikaliumfosfaat, Kaliumhydroxide, Kaliumchloride, Natriumchlooride, Mono-kalium fosfaat, Dinatrium-fosfaat, Water voor injectie
- Polypeptiden, Gluciden in PBS
- gevriesdroogd virus: Sorbitol, Gehydroliseerde gelatine, Caseinehydrolysaa, Dinatriumfosfaat dihydrodraat, Suspenderlevloeistof, Dinatriumfosfaat dihydrodraat, Kalium dihydrogeen fosfaat, Water voor injectie
- Water voor injectie
- Opmerking: het lijkt ons sterk dat dit de enige hulpstof is want hoe wordt dit virus geattenueerd?

Dosering
- Na 2-voudige vaccinatie is een immuniteitsduur van enkele maanden aannemelijk gemaakt
- Bescherming begint 2 weken na de vaccinatie, die aanhoudt totdat de hond 11 weken oud is. Voor langdurige bescherming: enten met een parvovirusvalentie volgens schema dat dient te beginnen voor de leeftijd van 11 weken.
- Jaarlijks na enkelvoudige basisvaccinatie
- Jonger dan 12 weken: 6-12 weken oud: 3-Jaarlijks na 2 tot 3-voudige basisvaccinatie
- Jaarlijks na 2- tot 3-voudige basisvaccinatie
- Vanaf 12 weken oud: 6-12 weken oud: 3-Jaarlijks na 2 tot 3-voudige basisvaccinatie met een interval van 2-4 weken, waarvan de laatste op de leeftijd van 12 weken. Vanaf 12 weken oud: 3-Jaarlijks na enkel-voudige basisvaccinatie

Toediening
- Subcutaan Subcutaan Subcutaan Subcutaan Subcutaan Subcutaan

Bijwerkingen
- Worden niet vermeld in registratie.
- Lichte, voorbijgaande, soms pijnlijke, jeuk (duur minder dan 1 min.) binnen 30 minuten na de vaccinatie op de injectieplaats.
- Lichte entreactie
- Lokale entreactie of milde voorbijgaande overgevoeligheidsreactie.
- Geen bekend
**Waarschuwingen**

Niet bij drachtige dieren gebruiken.

Vaccinstam kan zich verspreiden, veroorzaakt geen bijwerkingen bij drachtige of lacterende teven of katten. Vóór vaccinatie tegen maagdarmwormen behandelen.

Kan tijdens dracht en lactatie worden gebruikt. Minimaal 10 dagen voor vaccinatie ontwormen.

De veiligheid van het vaccin bij het moederdier is niet bewezen tijdens dracht en/of lactatie.

Niet gebruiken tijdens de gehele drachtperiode.

Gebruik van immunosuppressieve middelen binnen 4 weken vóór of na vaccinatie kan het resultaat ongunstig beïnvloeden.

Mijdt gebruik van hyper-immuun serum of immuno-suppressieve geneesmiddelen gedurende 1 maand na vaccinatie.
## Combinatieve Vaccins

### Hondenziekte en Parvo

<table>
<thead>
<tr>
<th>Vaccin</th>
<th>Werkzame bestanddelen</th>
<th>Adjuvantia/hulpstoffen</th>
<th>Dosering</th>
<th>Toediening</th>
<th>Bijwerkingen</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Nobivac Puppy DP</strong> (Intervet)</td>
<td>Levend, geattenueerd: Hondenziektievirus, stam Onderstepoort</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Canine Parvovirus, stam 154</td>
<td>Gevriesdroogd virus: Sorbitol, Gehydrolyseerde gelatine caseihezodylaat, Dinatriumfosfaat dihydraat</td>
<td>Na vaccinatie met Nobivac Puppy DP volgens voorschrift is een immuniteitsduur van 3 weken onderbouwd. Hervaccinatie van alle pups op een leeftijd van 8-9 weken wordt geadviseerd.</td>
<td>Subcutaan</td>
<td>Lokale entreactie of milde, voorbijgaande overgevoeligheidsreactie.</td>
</tr>
</tbody>
</table>

### Hondenziekte, HCC, Parvo en kennelhoest (adenovirus type 2)

<table>
<thead>
<tr>
<th>Vaccin</th>
<th>Werkzame bestanddelen</th>
<th>Adjuvantia/hulpstoffen</th>
<th>Dosering</th>
<th>Toediening</th>
<th>Bijwerkingen</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Eurican DHP</strong> (Merial)</td>
<td>Levend geattenuueerd: Canine Distemper Virus, stam Onderstepoort</td>
<td>Sorbitol, Gehydrolyseerde gelatine caseihezodylaat, Kaliumhydroxide, Water voor injectie</td>
<td>Jaarlijks na enkelvoudige basisvaccinatie vanaf de leeftijd van 12 weken</td>
<td>Subcutaan</td>
<td>Tijdelijke verhoging van de lichaamstemperatuur en/of tijdelijke overgevoeligheidsreactie (anafylaxis) met symptomen zoals lethargie, oedeem in de kop, pruritis, dyspnee, braken, diarree of neervallen vlak na de vaccinatie (uitzonderlijk).</td>
</tr>
<tr>
<td>12 weken en ouder</td>
<td>Canine Adenovirus type 2, stam Manhattan CAV2 20 RCVF8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Canine Parvovirus, stam 780916-115</td>
<td></td>
<td>3-Jaarlijks na 2-voudige basisvaccinatie met een interval van 2-4 weken, waarvan de tweede vaccinatie op de leeftijd van 12 weken</td>
<td></td>
<td>Tijdelijke verhoging van de lichaamstemperatuur en/of tijdelijke overgevoeligheidsreactie (anafylaxis) met symptomen zoals lethargie, oedeem in de kop, pruritis, dyspnee, braken, diarree of neervallen vlak na de vaccinatie (uitzonderlijk).</td>
</tr>
<tr>
<td><strong>Nobivac DHP</strong> (Intervet)</td>
<td>Levend geattenuueerd: Canine Adenovirus type 2, stam Manhattan LPV3</td>
<td></td>
<td></td>
<td>Subcutaan</td>
<td>Maternale antistoffen kunnen het resultaat van de vaccinatie ongunstig beïnvloeden.</td>
</tr>
<tr>
<td>8 weken en ouder</td>
<td>Canine Parvovirus, stam 154</td>
<td></td>
<td></td>
<td></td>
<td>Kan tijdens de dracht gebruikt worden.</td>
</tr>
<tr>
<td></td>
<td>Canine Adenovirus type 2, stam Manhattan LPV3</td>
<td></td>
<td></td>
<td></td>
<td>Maternale antistoffen kunnen het resultaat van de vaccinatie ongunstig beïnvloeden.</td>
</tr>
<tr>
<td></td>
<td>Canine Adenovirus type 2, stam Manhattan LPV3</td>
<td></td>
<td></td>
<td></td>
<td>Kan tijdens de dracht gebruikt worden.</td>
</tr>
<tr>
<td></td>
<td>Canine Adenovirus type 2, stam Manhattan CAV2 20 RCVF8</td>
<td></td>
<td></td>
<td></td>
<td>Maternale antistoffen kunnen het resultaat van de vaccinatie ongunstig beïnvloeden.</td>
</tr>
<tr>
<td>8 weken en ouder</td>
<td>Canine Parvovirus, stam 780916-115</td>
<td></td>
<td></td>
<td></td>
<td>Kan tijdens de dracht gebruikt worden.</td>
</tr>
</tbody>
</table>
## Hondenziekte, HCC, Parvo en Paraïnfluenza

<table>
<thead>
<tr>
<th>Nobivac DHPPi</th>
<th>Vanguard PUP</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intervet)</td>
<td>(Pfizer)</td>
</tr>
<tr>
<td>Werkzame bestanddelen</td>
<td>Werkzame bestanddelen</td>
</tr>
<tr>
<td>8 weken en ouder</td>
<td>6 weken en ouder</td>
</tr>
<tr>
<td>Levend geattenueerd:</td>
<td>Levend geattenueerd:</td>
</tr>
<tr>
<td>Hondenziektevirus, stam Onderstepoort</td>
<td>Hondenziekte virus, stam N-CDV</td>
</tr>
<tr>
<td>Canine Adenovirus type 2, stam Manhattan LPV3</td>
<td>Canine Adeno Virus type 2, stam Manhattan</td>
</tr>
<tr>
<td>Canine Parvovirus, stam 154</td>
<td>Canine Parvo Virus, stam NL-35-D</td>
</tr>
<tr>
<td>Paraïnfluenza virus, stam CPI</td>
<td>Canine Paraïnfluenza Virus type 5 (NL-CPI-5)</td>
</tr>
<tr>
<td>Adjuvantiën/hulpstoffen</td>
<td>Adjuvantiën/hulpstoffen</td>
</tr>
<tr>
<td>Sorbitol, Gehydrolyseerde gelatine, Caseïne-hydrolysaat, Kalium- en natriumfosfaatbuffers, Water voor injectie</td>
<td>L2 gevriesdroogde stabilisator, Modified Eagle's medium, Antifoam SAG471</td>
</tr>
</tbody>
</table>

### Dosering

- Jaarlijks na 2-voudige basisvaccinatie met een interval van 2-4 weken voor virale kennelhoest veroorzaakt door canine paraïnfluenzavirus;
- 3-jaarlijks voor hondenziekte, hondenhepatitis, canine parvovirus infectie en virale kennelhoest veroorzaakt door canine adenovirus type 2

- Basisvaccinatie: 2-voudige vaccinatie met een interval van 3 weken.
- Geadviseerd wordt om met 12 weken bijvoorbeeld te vaccineren met Vanguard 7.
- Na vaccinatie met dit middel volgens voorschrift is m.b.t. hondenziekte een immuniteitsduur van 3 maanden en m.b.t. aandoeningen veroorzaakt door hondenhepatitis virus, Canine adenovirus type 2 en Canine Paraïnfluenza Virus een immuniteitsduur van 1 maand aannemelijk gemaakt

### Toediening

- Subcutaan

### Bijwerkingen

- Tijdelijke verhoging van de lichaamstemperatuur en/of tijdelijke overgevoeligheidsreactie (anafylaxis) met symptomen zoals lethargie, oedeem in de kop, pruritis, dyspneu, braken, diarree of neervallen vlak na vaccinatie (zeldzaam).
- Lokale, soms pijnlijke reactie op de injectieplaats.
<table>
<thead>
<tr>
<th>Hondenziekte, HCC, Parvo, Ziekte van Weil en Paraïnfluenza</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Canigen DHA2PPI-L</strong> (Virbac)</td>
</tr>
<tr>
<td>12 weken en ouder</td>
</tr>
<tr>
<td><strong>Werkzame bestanddelen</strong></td>
</tr>
<tr>
<td>Levend geattenued:</td>
</tr>
<tr>
<td>Hondenziekte Virus, stam Lederle</td>
</tr>
<tr>
<td>Canine Adenovirus type 2, stam Manhattan</td>
</tr>
<tr>
<td>Canine Parvovirus, stam CPV780916-115</td>
</tr>
<tr>
<td>Canine Para-influenza virus, stam Manhattan</td>
</tr>
<tr>
<td>Geïnactiveerd:</td>
</tr>
<tr>
<td>Leptospira interrogans bacteriën:</td>
</tr>
<tr>
<td>serovar canicola</td>
</tr>
<tr>
<td>serovar icterohaemorrhagiae</td>
</tr>
<tr>
<td><strong>Adjuvanta/hulpstoffen</strong></td>
</tr>
<tr>
<td>Geen gegevens over hulpstoffen en adjuvanta in bijsluiter of registratie</td>
</tr>
<tr>
<td>Sucrose, Dextran, Sorbitol, Caseine pepton, Collageen hydrolysaat, Monokaliumfosfaat, Dikaliumfosfaat, Kaliumhydroxide, Kaliumchloride, Natriumchloride, Dinatriumfosfaat dihydraat, Water voor injectie</td>
</tr>
<tr>
<td><strong>Dosering</strong></td>
</tr>
<tr>
<td>Canigen DHA2PPi-L</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>(Virbac)</td>
</tr>
</tbody>
</table>

### Toediening
- Canigen DHA2PPi-L: Subcutaan
- Euric DHPpi-L: Subcutaan
- Nobivac L+ DHPpi: Subcutaan
- Vanguard 7: Subcutaan

### Bijwerkingen
- Lokale, soms pijnlijke entreactie op de injectieplaats.
- Tijdelijke apathie (na eerste enting c.q. jongste leeftijd) en braken.
- Tijdelijke verhoging van de lichaamstemperatuur en/of tijdelijke overgevoeligheidsreactie (anafylaxis) met symptomen zoals lethargie, oedeem in de kop, pruritis, dyspneu, braken, diarree of neervallen vlak na de vaccinatie (uitzonderlijk).
- Overgevoeligheidsreactie (uitzonderlijk).

### Waarschuwingen
- Aanbevolen wordt de dieren tenminste 10 dagen voor vaccinatie tegen maagdarmwormen te behandelen.
- Niet gebruiken tijdens dracht en lactatie.

- Tijdelijke verhoging van de lichaamstemperatuur en/of tijdelijke overgevoeligheidsreactie (anafylaxis) met symptomen zoals lethargie, oedeem in de kop, pruritis, dyspneu, braken, diarree of neervallen vlak na de vaccinatie (uitzonderlijk).
- Lokale, soms pijnlijke reactie op de injectieplaats.
- Tijdelijke verhoging van de lichaamstemperatuur en/of tijdelijke overgevoeligheidsreactie (anafylaxis) met symptomen zoals lethargie, oedeem in de kop, pruritis, dyspneu, braken, diarree of neervallen vlak na de vaccinatie (uitzonderlijk).

- Alleen (gezonde) dieren vaccineren, die minimaal 10 dagen voor vaccinatie correct zijn ontwormd.
- Kan tijdens dracht en lactatie worden gebruikt.

- Honden niet aan zware fysieke inspanning bloot stellen alvorens volledige immuniteit is verkregen (aanbevolen).
Hondenziekte, HCC, Parvo, Ziekte van Weil, Paraïnfluenza, Coronavirus

**Quantum Dog DA2PPi/CVL**
(Intervet)
6 weken en ouder

**Werkzame bestanddelen**
Levend geattenuerend:
- Canine Distemper virus (Distemperoid stam)
- Canine Adeno-2-virus (Ditchfield stam)
- Canine Parvovirus (SAH 2b stam)
- Canine Paraïnfluenzavirus (Philips Roxane stam)

Geïnactiveerd:
- Feline Coronavirus (FEC-SA H stam)
- *Leptospira interrogans* serovar icterohaemorrhagae (stam 115)
- *Leptospira interrogans* serovar canicola (stam 117)

**Adjuvantia/hulpstoffen**
- Aluminiumhydroxide 1,63-2,21 mg
- Sucrose, Gelatine, Caseïnehydrolysaat, D-MEM (anorganische zouten, vitaminen, aminozuren etc.)

**Dosering**
Jaarlijks na 2-voudige basisvaccinatie met een interval van 3-4 weken (2e vaccinatie mag niet vóór de leeftijd van 10 weken) voor CPi, CCV en leptospirose en 4-jaarlijks voor CPV, CDV en CAV.

**Toediening**
Subcutaan of intramusculair

**Bijwerkingen**
Milde (<1 cm³), voorbijgaande, lokale zwelling op de injectieplaats na de 1e intramusculaire vaccinatie (incidenteel). Deze verdwijnt volledig en zonder complicaties binnen max. 3 weken.

Zwelling op de injectieplaats na de 1e of 2e subcutane vaccinatie (gewoonlijk); deze bedroeg <8 cm³ (4 cm diameter) na de 1e vaccinatie en verdween binnen 2 weken zonder complicaties. In zeldzame gevallen kunnen zwellingen pijnlijk zijn.

Tijdelijke verhoging van de lichaamstemperatuur, sloomheid, anorexia of diarree na vaccinatie (zeer zeldzaam). Voorbijgaande (1-2 dagen durende) kreupelheid na intramusculaire vaccinatie. Overgevoeligheidsreacties (zeldzaam).

**Waarschuwingen**
Honden niet blootstellen aan onnodig infectierisico binnen 1 week na vaccinatie.

Intramusculaire vaccinatie geeft iets hogere serologische respons dan subcutane vaccinatie. Daarom wordt, bij vermoede of gemeten hoge en persisterende maternale antilichamenniveaus (bv. voor CDV >30 SN eenheden bij de 1e vaccinatie), intramusculaire vaccinatie aanbevolen en dient de 1e vaccinatie uitgesteld te worden tot de leeftijd van 8 weken.

Sommige pups kunnen seropositief zijn voor het coronavirus (t.g.v. blootstelling of maternale antilichamen) op de minimumleeftijd van 6 weken; vaccineren heeft dan geen bijkomend voordeel.

Na vaccinatie worden de vaccinvirussen CAV-2 en CPV uitgescheiden en deze kunnen zich verspreiden naar niet-gevacineerde contactdieren, maar veroorzaken geen ziekte. Canine paraïnfluenza (CPi) kan ook uitgescheiden worden maar zal zich niet verspreiden.

Van katten (geen doeldier) is bekend dat ze vatbaar zijn voor CPV; contactdieren kunnen daarom antilichamen ontwikkelen, maar geen ziekte.

Niet gebruiken bij drachtige of lacterende teven. Drachtige teven mogen niet in contact komen met recent gevaccineerde dieren.
**Parvo en Ziekte van Weil**

<table>
<thead>
<tr>
<th>Eurican P-L (Merial)</th>
<th>Nobivac L + P (Intervet)</th>
<th>Vanguard CPV-Lepto (Pfizer)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 weken en ouder</td>
<td>8 weken en ouder</td>
<td>9 weken en ouder</td>
</tr>
</tbody>
</table>

**Werkzame bestanddelen**

- **Levend, geattenueerd Canine Parvovirus, stam 780916-115**
- **Geïnactiveerd: Leptospira interrogans: serovar canicola**
- **serovar icterohaemorrhagiae**

- **Levend, geattenueerd Canine Parvovirus (CPV), stam 154**
- **Geïnactiveerd: Leptospira interrogans: Canicola, serovar portland-vere, stam Ca-12-000**
- **serovar icterohaemorrhagiae**

**Adjuvantia/hulpstoffen**

- **Thiomersal, maximaal 0,1 mg**
- **Natriumchloride, Kaliumchloride, Natriumlactaat, Calciumchloride, Sorbitol, Gelatine, Trypton**
- **Thiomersal**

**Dosering**

Jaarlijks na enkelvoudige vaccinatie tegen aandoeningen veroorzaakt door CPV en na 2-voudige basisvaccinatie met een interval van 3 weken tegen leptospirose.

**Toediening**

Subcutaan of intramusculair

**Bijwerkingen**

Geringe entreactie op de injectieplaats.

**Waarschuwingen**

Kan tijdens de dracht worden gebruikt.

**Ziekte van Weil en Rabiës**

<table>
<thead>
<tr>
<th>Nobivac RL (Intervet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 weken en ouder</td>
</tr>
</tbody>
</table>

**Werkzame bestanddelen**

- **Geïnactiveerd rabiësvirus, stam Pasteur RIV**
- **Geïnactiveerd Leptospira interrogans serogroep: Canicola, serovar portland-vere**
- **Icterohaemorrhagiae, serovar copenhageni**

**Adjuvantia/hulpstoffen**

- **2% Aluminiumfosfaat 0,15 ml**
- **Thiomersal 0,01%, Fosfaatbuffer, Water voor injectie**

**Dosering**

Basisvaccinatie: Enkelvoudige vaccinatie vanaf de leeftijd van 12 weken. Voor leptospirose dient vóór de leeftijd van 12 weken, met een interval van 2-4 weken, een voorenting plaats te vinden met een ander leptospiroa vaccin.

Herhalingsvaccinatie:

- **Rabiës: 3-jaarlijks**
- **Leptospirose: jaarlijks**

**Toediening**

Subcutaan

**Bijwerkingen**

Diffuse zwelling (tot 5 mm in diameter) op de injectieplaats (max. 4 dagen). Deze zwelling kan hard en pijnlijk zijn (soms), maar zal geleidelijk verdwijnen (2-3 weken).

Tijdelijke verhoging van lichaamstemperatuur en/of tijdelijke overgevoeligheidsreactie (anafylaxis) met symptomen zoals lethargie, oedeem in de kop, pruritis, dyspneu, braken, diarree of neervallen vlak na de vaccinatie (uitzonderlijk).

**Waarschuwingen**

Kan tijdens dracht gebruikt worden.
### Vaccins katten, overzichtsschema per fabrikant

<table>
<thead>
<tr>
<th>Fabrikant</th>
<th>Kattenziekte</th>
<th>Kattenziekte</th>
<th>Niesziekte</th>
<th>Niesziekte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elanco Animal Health</td>
<td>Levend geattenueerd</td>
<td>Levend geattenueerd</td>
<td>Levend geattenueerd</td>
<td>Levend geattenueerd</td>
</tr>
<tr>
<td>Felocell CVR</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Felocell CVR-C</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Felocell RC</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Intervet</td>
<td>Levend</td>
<td>Levend</td>
<td>Levend</td>
<td>Levend</td>
</tr>
<tr>
<td>Nobivac Bb v. katten</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Nobivac Ducat</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Nobivac Forcat</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Nobivac Tricat</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Nobivac Tricat trio</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Merial</td>
<td>Levend</td>
<td>Levend</td>
<td>Levend</td>
<td>Levend</td>
</tr>
<tr>
<td>Purevax FeLV</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Purevax RC</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Purevax RCPCh</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Purevax RCP</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Purevax RCPCh FeLV</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Purevax RCP FeLV</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Pfizer</td>
<td>Levend</td>
<td>Levend</td>
<td>Levend</td>
<td>Levend</td>
</tr>
<tr>
<td>Fel-O-Vax i-CHP</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Fel-O-Vax i-CHP Chlam</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Fevaxyn FeLV</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Fevaxyn Pentofel</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Primucell FIP</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Versifel CVR</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Versifel CVR-C</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Versifel RC</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Virbac</td>
<td>Levend</td>
<td>Levend</td>
<td>Levend</td>
<td>Levend</td>
</tr>
<tr>
<td>Feligen CRP</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Leucogen</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Leucofiligen FeLV/RCP</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>
**Vaccins katten**, overzicht per ziekte

**Feline Immunodeficiëntie virus (FIV)**
Er bestaat geen vaccin tegen FIV.

**Feline Infectieuze Peritonitis (FIP)**
Er is één vaccin voor FIP op de markt maar volgens verschillende bronnen zijn de resultaten wisselend, en volgens ons is de fabrikant zich hier ook van bewust als je de tekst onder het kopje 'waarschuwingen' in de bijsluiter leest:

"Alhoewel de effectiviteit van dit product aangetoond werd, kan het voorkomen dat in sommige individuele gevallen de kat geen adequate immuunrespons kan opbouwen indien de kat in het incubatiestadium van een ziekte verkeert, ondervoed is, parasieten heeft, ofwel onder stressomstandigheden wordt gevaccineerd."

Ze houden nogal wat slagen om de arm.
Er zijn zelfs gevallen waarbij na vaccinatie juist FIP is ontstaan of het ziektebeeld verergerde. Op dit moment wordt geadviseerd om niet te vaccineren tegen FIP. Vaccineren heeft overigens alleen zin bij dieren die vrij zijn van coronavirus in het algemeen.

Opvallend is de korte immuniteitsduur: na een 2-voudige vaccinatie is een volledige immuniteit van 6 maanden en partiële immuniteit gedurende de daarop volgende 6 maanden aangetoond.

**Primucell FIP**
(Pfizer)
16 weken en ouder

**Werkzame bestanddelen**
Levend geattenuerde ts (thermosensitieve) stam:
FIP virus, stam Norden DF2

**Adjuvants/hulpstoffen**
Opmerking: deze worden niet in de bijsluiter of registratie vermeld

**Dosering**
Jaarlijks na 2-voudige basisvaccinatie met een interval van 3 weken

**Toediening**
Intranasaal

**Bijwerkingen**
Weinig of geen entreactie.
Niesbuien of een verhoging van de rectale lichaamstemperatuur (zeldzaam).
Overgevoeligheid (zeer zeldzaam).

**Waarschuwingen**
De enting van drachtige katten dient vermeden te worden.
Indien de kat in het incubatiestadium van een ziekte verkeert, ondervoed is, parasieten heeft, ofwel onder stressomstandigheden wordt gevaccineerd kan het gebeuren dat er geen adequate immuunrespons kan worden opgebouwd.

**Feline leukemievirus/ infectieuze Leukemie (FeLV)**
Er is tegen FeLV een vaccin beschikbaar maar deze is zeker niet 100% betrouwbaar; ook een gevaccineerde kat kan de ziekte nog krijgen.

"Er zijn ook een aantal vaccins op de markt die beweren bescherming te bieden tegen een FeLV-infectie, maar deze bescherming is echter niet 100% gegarandeerd. Het heeft natuurlijk geen zin om viraemische katten te vaccineren, daarom is testen voor de vaccinatie een vereiste. Routinematig vaccineren voor FeLV is hoe dan ook zinloos. Alleen katten die een risico lopen (bijvoorbeeld omdat een kat in hetzelfde huishouden geïnfecteerd is met FeLV, of katten die vrij rond lopen in een omgeving waar een hogere prevalentie (frequentie van voorkomen) is dan gemiddeld zou het zinvol kunnen zijn om routinematig te vaccineren.” aldus een tekst op de website van WHG Dierenartsen.

De fabrikanten vermelden dit allen ook in hun bijsluiter:
"Het is aangeraden om vóór de vaccinatie het bloed op FeLV antigenen te testen. Vaccinatie van FeLV positieve katten heeft geen voordeel.”
**Beschikbare vaccins:** (zie ook hoofdstuk combinatievaccins vanaf blz. 74)

<table>
<thead>
<tr>
<th>Fevaxyn FeLV (Pfizer)</th>
<th>Leucogen (Virbac)</th>
<th>Purevax FeLV (Merial)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 weken en ouder</td>
<td>8 weken en ouder</td>
<td>8 weken en ouder</td>
</tr>
</tbody>
</table>

**Werkzame bestanddelen**
- Geïnactiveerd Feline Leukemie Virus verkregen door recombinantie van E. coli-stam
- FeLV recombinant Kanariepokkenvirus (vCP97)

**Adjuvanta/hulpstoffen**
- Carbopel 1 mg
- Formaldehyde, Fosfaat bufferzout
- 3% aluminiumhydroxide gel (0,1 ml)
- Gezuiverd P4S-oppervlakte-antigeen
- Gentamicine, Sucrose, Sorbitol, Dextran 40, Caseïne hydrolysaat, Collagene hydrolysaat, Dikaliumpyrofosfaat, Kaliumdihydrogeenfosfaat, Gentamicine, Calciumpyrofosfaat, Quillajasaponoïde, Hydroxyde (10,0 µg). Natriumchloride, Dikaliumpyrophosphaat, Gentamicine, Succrose, Sorbitol, Dextran 40, Caseïne hydrolysaat, Collagene hydrolysaat, Magnesiumchloride, Calciumchloride, Gentamicine, Sucrose, Sorbitol, Dextran 40, Caseïne hydrolysaat, Magnesiumchloride, Calciumchloride, Gentamicine, Sucrose, Sorbitol, Dextran 40, Caseïne hydrolysaat, Magnesiumchloride, Calciumchloride, Gentamicine, Sucrose, Sorbitol, Dextran 40, Caseïne hydrolysaat
- 3% aluminiumhydroxide gel (0,1 ml); Gezuiverd extract van Quillaja saponaria (10,0 µg). Natriumchloride, Dikaliumpyrophosphaat, Gentamicine, Succrose, Sorbitol, Dextran 40, Caseïne hydrolysaat, Collagene hydrolysaat, Magnesiumchloride, Calciumchloride, Gentamicine, Sucrose, Sorbitol, Dextran 40, Caseïne hydrolysaat

**Dosering**
- Jaarlijks na een 2-voudige basisvaccinatie met een interval van 3-5 weken

**Toediening**
- Subcutaan

**Bijwerkingen**
- Gematigde lokale reactie van voorbijgaande aard (<2 cm) (oedeem, zwelling, knobbeltje)
- Pijn bij palpatie, niezen of conjunctivitis (zeldzaam).
- Hyperthermie (1-4 dagen), apathie en verstoring van de spijsvertering (buikpijn) (gebruikelijk).
- Voorbijgaande slaperigheid en hyperthermie.
- Overgevoeligheidsreacties: urticaria of oedeem in het gelaat, soms gepaard gaand met ademhalingsproblemen.

**Waarschuwingen**
- Het is aangeraden om vóór de vaccinatie het bloed op FeLV antigenen te testen.
- Vaccinatie van FeLV positieve katten heeft geen voordeel.
- Min. 10 dagen vóór de vaccinatie behandelen tegen maag-darmwormen (aanbevolen).

**Kattenziekte** (Feline Panleucopenievirus)
Er zijn verschillende vaccins ter preventie van kattenziekte in de handel, deze zijn slechts alleen in combinatie met andere vaccins verkrijgbaar (voor zover onze informatiebronnen kloppen).

De meeste fabrikanten hanteren een herhalingstermijn van 1 jaar. Merial en Nobivac (Tricat trio en Forcat) wijken daarvan af: na een 2-voudige basisvaccinatie en een booster na 1 jaar (deze booster is bij Nobivac Tricat trio blijkbaar niet nodig) wordt voor kattenziekte geadviseerd deze na 3 jaar te herhalen.

Voor het kattenziekte bestanddeel in de vaccins worden verschillende virusstammen gebruikt, zowel levend geattenuerd, als geïnactiveerd.

**Beschikbare vaccins:** zie hoofdstuk combinatievaccins vanaf blz. 70.
Niesziekte
Aangezien niesziekte een verzamelaar is voor veel voorkomende luchtweginfecties zal het geen verbazing wekken dat dit vaccin uit verschillende werkzame bestanddelen bestaat. Alle fabrikanten hanteren een 2-voudige basisvaccinatie met een interval van 3-4 weken, daarna een jaarlijkse herhaling, bij Nobivac Bb voor katten is een 2-voudige basisvaccinatie niet nodig. We maken voor het overzicht onderscheid in de verschillende ziekteverwekkers.

**Bordetella bronchoseptica**

<table>
<thead>
<tr>
<th>Nobivac Bb voor katten</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intervet)</td>
</tr>
<tr>
<td>1 maand en ouder</td>
</tr>
</tbody>
</table>

**Werkzame bestanddelen**
Bevat CFU (colony-forming unit) van levende Bordetella bronchiseptica bacteriën stam B-C2

**Adjuvantia/hulpstoffen**
Gelatine, Sorbitol, Fosfaatbuffers

**Dosering**
In 8 weken oude katten is aangetoond dat binnen 72 uur na vaccinatie immunititeit wordt verkregen. De immuniteitsduur bedraagt 1 jaar

**Toediening**
Intranasaal

**Bijwerkingen**
Niesen, kuchen, milde en voorbijgaande oog- en neusuitvloeiing (incidenteel)

**Waarschuwingen**
Niet gebruiken bij drachtige of lacterende poezen.

**Gevoelige dieren**
Gevaccineerde dieren kunnen de Bordetella bronchiseptica vaccinstam gedurende zes weken uitscheiden en er kan minstens een jaar intermitterende uitscheidings plaats vinden.

Alhoewel het risico dat immuun-deficiënte mensen met Bordetella bronchiseptica geïnfecteerd worden erg klein is, wordt geadviseerd om katten die intensief in contact komen met immuun-deficiënte mensen niet te vaccineren met dit vaccin.

**Infectie**
Indien antibiotica zijn toegediend binnen 1 week na vaccinatie dient de vaccinatie herhaald te worden nadat de antibiotica behandeling is afgerond.

**Calicivirus**
Het calici bestanddeel in de vaccins bestaat uit zowel levend geattenueerd virus als geïnactiveerd virus, de virusstammen verschillen.

**Rhinotracheïtisvirus** (herpesvirus)
Het Rhinotracheïtis bestanddeel in de vaccins bestaat uit zowel levend geattenueerd virus als geïnactiveerd virus, de virusstammen verschillen.

**Chlamydia**
Het Chlamydia bestanddeel in de vaccins bestaat uit zowel levend geattenueerd als geïnactiveerd.

Opmerking: Bijna alle fabrikanten waarschuwen voor Chlamydophila felis.

“Chlamydophila felis kan in principe humaan pathogen zijn. Hoewel in de geattenueerde Chlamydia stam in het onderhavige middel nooit is aangetoond dat het ziekte kan veroorzaken bij de mens, is het raadzaam om in geval van accidentele zelfinjectie onmiddellijk een arts te raadplegen.” (Versifel CRV-C).

“Personen met immunodeficiëntie of personen die immunosupressieve middelen gebruiken, wordt aangeraden contact te houden met het vaccin om verder te leren. Eigenaren dienen geinformeerd te worden dat sommige gevaccineerde katten Chl. felis uit kunnen scheiden.” (alle fabrikanten behalve Fel-O-Vax i-CHP Chlam).

Verder is het heel opvallend dat er bijna overal melding wordt gemaakt dat de componenten voor niesziekte dienen ter vermindering van (de ernst) van de klinische symptomen veroorzaakt door Feline infectieuze Rhinotracheïtisvirus, ter vermindering (van de ernst) van de klinische symptomen en secretie van het Feline Calicivirus en ter vermindering (van de ernst) van de klinische symptomen van Chlamydophila felis.
### Niesziektevaccins (zie ook hoofdstuk combinatievaccins vanaf blz. 70)

<table>
<thead>
<tr>
<th>Felocell RC</th>
<th>Nobivac Ducat</th>
<th>Purevax RC</th>
<th>Purevax RCCh</th>
<th>Versifel RC</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Elanco)</td>
<td>(Intervet)</td>
<td>(Merial)</td>
<td>(Merial)</td>
<td>(Pfizer)</td>
</tr>
<tr>
<td>12 weken en ouder</td>
<td>8 weken en ouder</td>
<td>8 weken en ouder</td>
<td>8 weken en ouder</td>
<td>8 weken en ouder</td>
</tr>
</tbody>
</table>

### Werkzame bestanddelen

<table>
<thead>
<tr>
<th>Levend geattenueerd:</th>
<th>Feline Calicivirus, stam F9</th>
<th>Geïnactiveerd:</th>
<th>Feline Calicivirus antigenen (stammen FCV 431 en G1)</th>
<th>Leven geattenueerd:</th>
<th>Feline Calicivirus, stam F-9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Levend geattenueerd:</td>
<td>Feline Calicivirus, stam F9</td>
<td>Geïnactiveerd:</td>
<td>Feline Calicivirus antigenen (stammen FCV 431 en G1)</td>
<td>Levend verzwakt:</td>
<td>Feline Rhinotracheïtis herpesvirus (stam FHV F2)</td>
</tr>
<tr>
<td>Feline infectieuze Rhinotracheïtisvirus, stam FVRm</td>
<td>Feline virale Rhinotracheïtis Virus, stam G2620A</td>
<td>Levend verzwakt:</td>
<td>Feline Rhinotracheïtis herpesvirus (stam FHV F2)</td>
<td>Chlamydophila felis (stam 905)</td>
<td>Feline infectieuze Rhinotracheïtisvirus, stam FVRm</td>
</tr>
</tbody>
</table>

### Adjuvantia/hulpstoffen

| L2 Stabilisator (Dextran 40, Caseïne hydrolysaat, Lactose, Sorbitol, Natrium hydroxide), Modified Eagle’s medium (MEM), Water voor injectie | Gelatine-gebaseerde stabilisator, Fosfaatbuffer, Sucrose, Water voor injectie | Gentamicine, Sucrose, Sorbitol, Dextran 40, Caseïne hydrolysaat, Collageen hydrolysaat, Dikaliumfosfaat, Kaliumdiwaterstoffosfaat, Kaliumhydroxide, Natriumchloride, Dinatrium-waterstoforthofosfaat, Monokaliumfosfaat anhydraat, Water voor injectie | Gentamicine, Sucrose, Sorbitol, Dextran 40, Caseïne hydrolysaat, Collageen hydrolysaat, Dikaliumfosfaat, Kaliumdiwaterstoffosfaat, Kaliumhydroxide, Natriumchloride, Dinatrium-waterstoforthofosfaat, Monokaliumfosfaat anhydraat, Water voor injectie | L2 Stabilisator (Dextran 40, Caseïne hydrolysaat, Lactose, Sorbitol, Natrium hydroxide), Modified Eagle’s medium (MEM), Water voor injectie |

### Dosering

Jaarlijks na een 2-voudige basisvaccinatie met een interval van 3-4 weken (allen)

### Toediening

Subcutaan

### Bijwerkingen

|------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------|

### Waarschuwingen

Vaccinatie van drachtige katten dient vermeden te worden.

Personen met een immunodedeficiëntie of die immunosuppressiva nemen moeten dit vaccin vermijden.

Vaccinatie van drachtige katten dient vermeden te worden.
### Combinatievaccins

#### Kattenziekte en Niesziekte vaccins (zonder Chlamydia)

<table>
<thead>
<tr>
<th>Feligen CRP (Virbac)</th>
<th>Felocell CVR (Elanco)</th>
<th>Fel-O-Vax i-CHP (Pfizer)</th>
<th>Nobivac Tricat (Intervet)</th>
<th>Nobivac Tricat trio</th>
<th>Purevax RCP (Merial)</th>
<th>Versifel VCR (Pfizer)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 weken en ouder</td>
<td>8 weken en ouder</td>
<td>12 weken en ouder</td>
<td>8-9 weken en ouder</td>
<td>8 weken en ouder</td>
<td>8 weken en ouder</td>
<td>8 weken en ouder</td>
</tr>
<tr>
<td><strong>Werkzame bestanddelen</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feline herpesvirus type 1, stam F2</td>
<td>Feline herpesvirus type 1, stam 605</td>
<td>Feline herpesvirus, stam G2620A</td>
<td>Feline herpesvirus, stam G2620A</td>
<td>Feline infectieuze Rhinotraceitisvirus, stam FVRm</td>
<td>Feline infectieuze rhinotraceitisvirus FVRm-stam</td>
<td></td>
</tr>
<tr>
<td>Kattenziektevirus, stam LR 72</td>
<td>Feline Panleukopenievirus, sneeuwluijpaardstam</td>
<td>Kattenziektevirus, stam BL 4</td>
<td>Kattenziektevirus, stam Bristol</td>
<td>Kattenziektevirus, stam Bristol</td>
<td>Feline Panleukopenievirus (PLI IV)</td>
<td></td>
</tr>
</tbody>
</table>

### Adjuvanta / hulpstoffen

| Worden niet vermeld in de registratie | L2 Stabilisator (Dextran 40, Caseine hydrolysaat, Lactose, Sorbitol, Natrium hydroxide), Modified Eagle’s medium (MEM), Water voor injectie | Adjuvanta: Ethyleen maleinezuur anhydride (EMA31), Neocryl A 640, Emulsigen SA, Eagles Earles | Worden niet vermeld in de registratie | Dinatriumfosfaat dihydraat, Gehydrolyseerd gelatine, Pancreas caseinehydrolysaat, Sorbitol, Kaliumdiwaterstoffosfaat, Water voor injectie | Gentamicine, Sucrose, Sorbitol, Dextran 40, Caseine hydrolysaat, Collageen hydrolysaat, Dikaliumfosfaat, Kaliumwaterstofstofssfaat, Kaliumhydroxide, Natriumchloride, Dinatriumwaterstoforthofosfaat, Monokaliumfosfaat anhydraid, Water voor injectie | L2 Stabilisator (Dextran 40, Caseine hydrolysaat, Lactose, Sorbitol, Natrium hydroxide), Modified Eagle’s medium (MEM), Water voor injectie |

### Dosering

| Jaarlijks na 2-voudige basisvaccinatie met een interval van 3-4 weken | Jaarlijks na 2-voudige basisvaccinatie met een interval van 3-4 weken | Jaarlijks na 2-voudige basisvaccinatie met een interval van 3-4 weken | Jaarlijks na 2-voudige basisvaccinatie met een interval van 3-4 weken | Jaarlijks na 2-voudige basisvaccinatie met een interval van 3-4 weken voor FCV en FHV; 3-jaarlijks voor FPLV | Jaarlijks na 2-voudige basisvaccinatie met een interval van 3-4 weken voor FHV en FCV; 3-jaarlijks voor PLV | Jaarlijks na 2-voudige basisvaccinatie met een interval van 3-4 weken |

### Toediening

<table>
<thead>
<tr>
<th>Subcutaan</th>
<th>Subcutaan</th>
<th>Subcutaan of intramusculair</th>
<th>Subcutaan of intramusculair</th>
<th>Subcutaan</th>
<th>Subcutaan</th>
<th>Subcutaan</th>
</tr>
</thead>
</table>

---

70
| Feligen CRP  
(Virbac) | Felocell CVR  
(Elanco) | Fel-O-Vax i-CHP  
(Pfizer) | Nobivac Tricat  
(Intervet) | Nobivac Tricat trio  
(Intervet) | Purevax RCP  
(Merial) | Versifel VCR  
(Pfizer) |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Bijwerkingen</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Overgevoeligheidsreacties zoals: jeuk, benauwdheid, braken, diarree en collaps (zeer zeldzaam).</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
## Kattenziekte en Niesziekte inclusief Chlamydia

<table>
<thead>
<tr>
<th>Vaccin</th>
<th>Werkzame bestanddelen</th>
<th>Adjuvants/hulpstoffen</th>
<th>Dosering</th>
<th>Toediening</th>
<th>Bijwerkingen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Felocell CVR-C (Elanco)</td>
<td>Levend geattemueerd:</td>
<td>Stabilisator (Caseïne hydrolysaat, Gelatine, Sucrose,)</td>
<td>Jaarlijks na 2-voudige basis-vaccinatie met een interval van 3-4 weken</td>
<td>Subcutaan</td>
<td>Voorbijgaande verhoging van de lichaamstemperatuur.</td>
</tr>
<tr>
<td>Fel-O-Vax i-CHP Chlam (Pfizer)</td>
<td>Feline Calicivirus, stam F-9</td>
<td>Ethyleen maleinezuur anhydride EMA31, Neocryl, Emulsigen SA, Eagles Earles</td>
<td>Jaarlijks na 2-voudige basis-vaccinatie met een interval van 3-4 weken</td>
<td>Subcutaan of intramusculair</td>
<td>Voorbijgaande verhoging van de lichaamstemperatuur.</td>
</tr>
<tr>
<td>Nobivac Forcat (Intervet)</td>
<td>Feine infectieus Rhinotracheïtisvirus, stam FVRm</td>
<td>Gelatine, Sucrose, Dinatrium fosfaat dihydroaat, Kaliumdiwaterstoffosfaat, Water voor injectie</td>
<td>Jaarlijks na 2-voudige basis-vaccinatie met een interval van 3-4 weken</td>
<td>Subcutaan</td>
<td>Voorbijgaande verhoging van de lichaamstemperatuur.</td>
</tr>
<tr>
<td>Versifel CVR-C (Pfizer)</td>
<td>Feline Panleukopenievirus, stam MW-1</td>
<td>Stabilisator (Caseïne hydrolysaat, Gelatine, Sucrose,)</td>
<td>Jaarlijks na 2-voudige basis-vaccinatie met een interval van 3-4 weken</td>
<td>Subcutaan</td>
<td>Voorbijgaande verhoging van de lichaamstemperatuur.</td>
</tr>
</tbody>
</table>

### Werkzame bestanddelen
- **Levend geattemueerd:**
  - Feline Calicivirus, stam F9
  - Feline Rhinotracheïtisvirus, stam 605
  - Chlamydia felis, stam Baker
  - Feline Panleukopenievirus, stam MW-1

### Adjuvants/hulpstoffen
- Stabilisator (Caseïne hydrolysaat, Gelatine, Sucrose), Modified Eagle’s medium (MEM), Water voor injectie

### Dosering
- Jaarlijks na 2-voudige basis-vaccinatie met een interval van 3-4 weken
  - Voorbijgaande verhoging van de lichaamstemperatuur.
  - Voorbijgaande verhoging van de lichaamstemperatuur.
  - Voorbijgaande verhoging van de lichaamstemperatuur.
  - Voorbijgaande verhoging van de lichaamstemperatuur.

### Toediening
- Subcutaan

### Bijwerkingen
- Voorbijgaande verhoging van de lichaamstemperatuur.
<table>
<thead>
<tr>
<th>Felocell CVR-C (Elanco)</th>
<th>Fel-O-Vax i-CHP Chlam (Pfizer)</th>
<th>Nobivac Forcat (Intervet)</th>
<th>Purevax RCPCh (Merial)</th>
<th>Versifel CVR-C (Pfizer)</th>
</tr>
</thead>
</table>

**Waarschuwingen**


Chlamyphila felis kan in principe humaan pathogeen zijn. Hoewel het nooit is aangetoond dat het ziekte kan veroorzaken bij de mens.

Geneesmiddel bevat minerale olie. Injectie/ zelfinjectie kan ernstige pijn en zwelling tot gevolg hebben, vooral in geval van injectie in een gewricht of vinger. Zonder snel medisch ingrijpen kan dit in zeldzame gevallen leiden tot verlies van de betrokken vinger.
## Kattenziekte, Niesziekte (inclusief Chlamydia) en FeLV

<table>
<thead>
<tr>
<th>Fevaxyn Pentofel (Pfizer)</th>
<th>Purevax RCPCh FeLV (Merial)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 weken en ouder</td>
<td>8 weken en ouder</td>
</tr>
</tbody>
</table>

### Werkzame bestanddelen

- **Geïnactiveerd Kattenleukemie virus, 61E stam**
- **Feline Calicivirus, 255 stam**
- **Feline Rhinotracheitisvirus, 605 stam**
- **Feline Chlamydia felis, Cello stam**
- **Kattenziektevirus, CU 4 stam**

### Adjuvanta / hulpstoffen

- Ethyleen/maleïnezuuranhydride (EMA), Neocryl A640, Emulsigen SA
- Eagles Earles Minimal Essential Medium met Hepes buffer en Lactalbumine hydrolysaat

### Dosering

Jaarlijks na 2-voudige basisvaccinatie met een interval van 3-4 weken.

Een extra dosis wordt aanbevolen voor katjes die in een omgeving met een verhoogd FeLV risico worden gehouden en die de 1e dosis voor de leeftijd van 12 weken hebben gekregen.

### Toediening

- Subcutaan

### Bijwerkingen

- Entreactie, zoals voorbijgaande koorts, braken, gebrek aan eetlust en/of lusteloosheid, die gewoonlijk binnen 24 uur verdwijnt (zeldzaam).
- Lokale reactie met zwelling, pijn, jeuk en haaruitval op de plaats van injectie (zo nu en dan).
- Overgevoeligheidsreacties met oedeem, ademhalings- en hartproblemen, ernstige maagdarmstoornissen of shock gedurende de 1e uren na de vaccinatie (zeer zeldzaam).

### Waarschuwingen

Vaccinatie van drachtige poezen wordt afgeraden.

Geneesmiddel bevat minerale olie. Injectie/ zelfinjectie kan ernstige pijn en zwelling tot gevolg hebben, vooral in geval van injectie in een gewricht of vinger. Zonder snel medisch ingrijpen kan dit in zeldzame gevallen leiden tot verlies van de betrokken vinger.

Vaccinatie van FeLV positieve katten is niet zinvol.

De vaccinatie heeft geen invloed op het verloop van een kattenleukemie-infectie die op het ogenblik van de vaccinatie reeds in de kat aanwezig is. Dit betekent dat dergelijke katten kattenleukemie virus zullen uitscheiden ongeacht de vaccinatie. Deze katten vormen dus een gevaar voor gevoelige katten in de omgeving. Het verdient dan ook aanbeveling om katten bij wie het risico dat ze aan het kattenleukemie virus worden blootgesteld groot is, vóór de vaccinatie op kattenleukemie virusantigenen te testen. Bij een negatieve test mag de kat worden gevaccineerd. Bij een positieve test moet de kat van andere katten worden geïsoleerd en na 1 à 2 maanden opnieuw worden getest. Katten die bij de 2e test positief blijken te zijn, moeten worden beschouwd als katten die continu met het kattenleukemie virus zijn besmet en dienen als dusdanig te worden behandeld. Katten die bij de 2e test negatief blijken te zijn, mogen worden gevaccineerd omdat ze de kattenleukemie-infectie hoogstwaarschijnlijk hebben overwonnen.*

Vaccinatie van FeLV positieve katten heeft geen voordeel. Het wordt aanbevolen om vóór de vaccinatie een test op FeLV antigenen uit te voeren.
*Opmerking: Deze laatste bewering verbaast nogal; waarom een dier vaccineren dat zojuist het virus overwonnen heeft en er voldoende geheugencellen aanwezig moeten zijn? Op blz. 26 vermelden wij al dat wanneer een dier een FeLV infectie overwonnen heeft voor onbepaalde tijd immuun is en niet ziek wordt.

**Kattenziekte, Niesziekte (zonder Chlamydia) en FeLV**

<table>
<thead>
<tr>
<th>Leucogen FeLV/RCP (Virbac)</th>
<th>Purevax RCP FeLV (Merial)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Werkzame bestanddelen</td>
<td></td>
</tr>
<tr>
<td>Gezuiverd p45 FeLV-envelop antigen: 102 µg</td>
<td>FeLV recombinant kanariepokkenvirus (vCP97)</td>
</tr>
<tr>
<td>Levend geattenuerd:</td>
<td>Geïnactiveerd:</td>
</tr>
<tr>
<td>Feline Calicivirus (stam F9)</td>
<td>Feline Calicivirus antigenen (stammen FCV 431 en G1)</td>
</tr>
<tr>
<td></td>
<td>Levend verzakt:</td>
</tr>
<tr>
<td>Feline virale Rhinotracheitis virus (stam F2)</td>
<td>Feline Rhinotracheitis herpesvirus (stam FHV F2)</td>
</tr>
<tr>
<td>Feline Panleukopenievirus (stam LR 72)</td>
<td>Feline Panleucopenie virus (PLI IV)</td>
</tr>
<tr>
<td>Adjuvantia / hulpstoffen</td>
<td></td>
</tr>
<tr>
<td>Stabilisatiebuffer met gelatine, 3% aluminiumhydroxidegel (1 mg), Gezuiverd extract van Quillaja saponaria (10 µg)</td>
<td>Gentamicine, hoogstens 23 µg</td>
</tr>
<tr>
<td>Gebufferde isotoni sche oplossing tot: 1 ml</td>
<td>Sucrose, Sorbitol, Dextran 40, Caseïne hydrolysaat, Collageen hydrolysaat, Dikaliumfosfaat, Kaliumdihydrogeenfosfaat, Kaliumhydroxide, Natriumchloride, Dinatriumwaterstoforthofosfaat, Gentamicine, hoogstens 23 µg</td>
</tr>
<tr>
<td>Lyofilaat: Gelatine, Kaliumhydroxide, Lactosemonohydraat, Glutaminezuur, Kaliumdihydroegenfosfaat, Dikaliumfosfaat.</td>
<td>Kaliumdihydroegenfosfaat, Kaliumhydroxide, Natriumchloride, Dinatriumwaterstoforthofosfaat, Gentamicine, hoogstens 23 µg</td>
</tr>
<tr>
<td>Oplosmiddel: Natriumchloride, Dinatriumfosfaat watervrij, Kaliumdihydroegenfosfaat</td>
<td>Oplosmiddel: Natriumchloride, Dinatriumwaterstoforthofosfaat, Gentamicine, hoogstens 23 µg</td>
</tr>
<tr>
<td>Dosering</td>
<td></td>
</tr>
<tr>
<td>Jaarlijks na 2-voudige basisvaccinatie met een interval van 3-4 weken</td>
<td>Jaarlijks na 2-voudige basisvaccinatie met een interval van 3-4 weken en een booster na een jaar voor FCV, FHV en Feline leukemie componenten; 3-jaarlijks voor FPV</td>
</tr>
<tr>
<td>Toediening</td>
<td></td>
</tr>
<tr>
<td>Subcutaan</td>
<td>Subcutaan</td>
</tr>
<tr>
<td>Bijwerkingen</td>
<td></td>
</tr>
<tr>
<td>Waarschuwingen</td>
<td></td>
</tr>
<tr>
<td>Katten vóór de vaccinatie onderzoeken op FeLV (aanbevolen).</td>
<td>Vóór vaccinatie een test op FeLV antigenen uit te voeren (aanbevolen).</td>
</tr>
<tr>
<td>Alleen FeLV-negatieve katten mogen gevaccineerd worden.</td>
<td>Vaccinatie van FeLV positieve katten heeft geen voordeel.</td>
</tr>
<tr>
<td>De vaccinstammen van het Feline Calicivirus en het Feline Panleukopenievirus kunnen zich verspreiden. Het is aangetoond dat deze verspreiding geen bijwerkingen veroorzaakte bij niet gevaccineerde katten. Ten minste 10 dagen vóór de vaccinatie te behandelen tegen maagdarmwormen (aanbevolen).</td>
<td></td>
</tr>
<tr>
<td>Niet gebruiken bij drachtige en lacterende katten.</td>
<td></td>
</tr>
</tbody>
</table>
### Vaccins paarden, overzichtsschema per fabrikant

<table>
<thead>
<tr>
<th>Fabrikant</th>
<th>Influenza stam A/equi</th>
<th>Rhinopneumonie</th>
<th>Tetanus</th>
<th>Droes</th>
<th>Dermatoftyme</th>
<th>Rabies</th>
<th>West Nijl virus</th>
<th>Reovirus</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Boehringer-Ingelheim:</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insol Derma-tophyton</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Elanco:</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duvaxyn IE Plus T</td>
<td>*</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td><strong>Intervet:</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. Equenza T</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. Equenza T</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. Prequenza</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. Prequenza Te</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. Resequin</td>
<td>*</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. StreptE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. Tetanus Vacc.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nobivac R</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prevacun NT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resequin Plus</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetanus serum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Merial:</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pneumequine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ProteqFlu</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ProteqFlu-Te</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proteq West Nile</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Pfizer:</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equip EHV 1,4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duvaxyn WNV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equip FT</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vanguard R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
</tr>
</tbody>
</table>
Vaccins paarden, overzicht per ziekte

Afrikaanse paardenpest
Op dit moment is er geen geregistreerd vaccin beschikbaar in Europa. In geval van uitbraak ligt er bij het ministerie van LNV een draaiboek klaar dat uitgaat van een in Zuid-Afrika beschikbaar vaccin.

Droes
Er is 1 vaccin op de markt tegen Droes. “Het vaccin is bedoeld voor gebruik in paarden waarvoor een risico op Streptococcus equi infectie duidelijk is vastgesteld, als gevolg van contact met paarden uit gebieden waarvan bekend is dat dit pathogene aanwezig is, b.v. stallen met paarden die vervoerd worden naar keuringen en/of wedstrijden in zulke gebieden, of stallen die paarden hebben of paarden aangeleverd krijgen uit zulke gebieden.” aldus de fabrikant (Intervet).
Andere interessante informatie uit de registratie: “In de challenge studies uitgevoerd door Intervet werd onvoldoende bescherming gevonden in ongeveer een kwart van de paarden gevaccineerd met de aanbevolen dosis.” Als je daar de korte werkingsduur naast zet: Het begin van de immuniteit is vastgesteld op 2 weken na de basisvaccinatie. Immuniteitsduur: De immuniteitsduur is tot 3 maanden.
Dan kun je volgens ons wel stellen dat dit een vaccin is dat niet erg goed werkt.

**Equilis StrepE**
(Intervet)
4 maand en ouder

**Werkzame bestanddelen**
Levend deletie mutant Streptococcus equi stam TW928

**Adjuvantia/hulpstoffen**
NAO-1 stabilisator, Water voor injectie

**Dosering**
Om de 3 maanden na een 2-voudige basisvaccinatie met een interval van 4 weken.
Een priming respons wordt tot 6 maanden na basisvaccinatie gehandhaafd. Hierdoor is een enkele dosis nodig om immuniteit te herstellen.

**Toediening**
Dien de hele inhoud van de spuit toe in de binnenkant van de bovenlip (zie figuur).

**Bijwerkingen**
Na 24 uur een diffuse (warme of pijnlijke) zwellingsreactie op de injectieplaats. Deze reactie heeft maximaal op 2-3 dagen na vaccinatie een maximale grootte van 3 cm bij 8 cm.
Kleine suppuratieve ontsteking op de injectieplaats, leidend tot een scheuring van de overheen liggende lip mucosa waarbij vloeistof en ontstekingscellen vrij komen (mogelijk).
Licht troebele uitscheiding uit de injectieplaats 3-4 dagen na vaccinatie (in de regel).
Lichte vergrotingen, eventueel voorbijgaand pijnlijk, van de retrofaryngeale en mandibulaire lymfknopen gedurende een paar dagen na vaccinatie (mogelijk).
Abces op de injectieplaats of in de regionale lymfknopen (zeer zeldzaam).
Verhoging van rectaaltemperatuur met 2 °C op dag van vaccinatie (zeer zeldzaam).
Gebrek aan eetlust, koorts en trillen (zeldzaam).
Neerslachtigheid (zeer zeldzaam).

**Waarschuwingen**
Uitscheiding van de vaccinstam uit de injectieplaats kan worden waargenomen gedurende een periode van 4 dagen na vaccinatie.
Uit de literatuur is bekend dat een erg klein aantal paarden purpura haemorrhagica kan ontwikkelen als ze kort na infectie
gevaccineerd worden. Purpura haemorrhagica is niet waargenomen in de veiligheidsstudies uitgevoerd tijdens de ontwikkeling van Equilis StrepE. Omdat de incidentie van purpura haemorrhagica erg laag is kan het voorkomen niet volledig worden uitgesloten.

Niet gebruiken in drachtige of lacterende merries. Basisvaccinatie tijdens een uitbraak is niet effectief omdat de immuniteit onvoldoende is totdat de basisvaccinatie voltooid is.

Voor de gebruiker/arts:

Huidschimmel (dermatophytosis, ringworm)
Tegen huidschimmel was er een vaccin op de markt: Insol Dermatophyton. Dit vaccin is in Nederland echter niet meer verkrijgbaar (registratie ingetrokken op 18-06-2010) maar wordt nog wel vermeld op de internationale site van Boehringer-Ingelheim.

Influenza

Van de Equilis Equenza T hebben wij twee registraties gevonden; nr. 9139 en 9704. Registratie 9139 heeft de stammen Praag/Miami/Fontainebleau en registratie 9704 de stammen Praag/Newmarket1/Newmarket2.

Beschikbare vaccins: (zie ook hoofdstuk combinatievaccins vanaf blz. 82).

<table>
<thead>
<tr>
<th>ProteqFlu (Merial)</th>
<th>Equilis Prequenza (Intervet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 maand en ouder</td>
<td>6 maand en ouder</td>
</tr>
</tbody>
</table>

Werkzame bestanddelen

- A/equi/2/Ohio/03 [H3N8] recombinant kanariepokkenvirus (vCP2242)
- A/equi/2/Newmarket/2/93 [H3N8] recombinant kanariepokkenvirus (vCP1533)
- Gezuiverde haemagglutinine subunits uit paardeninfluenza virusen.
- A/equine-1/Praag/1/56 100 AE
- A/equine-2/Newmarket/1/93 50 AE
- A/equine-2/Newmarket/2/93 50 AE

Adjuvanta/hulpstoffen

- Carbomer 4 mg
- Natriumchloride, Dinatriumwaterstoforthofosfaat, Monokaliumfosfaat anhydraat, Water voor injectie
- Saponine (375 mg), Cholesterol (125 mg), Fosfatidylcholin (62,5 mg)
- Lactose, Fosfaatbuffer, Chloridebuffer, Thiomersal

Dosering

Jaarlijks na 2-voudige basisvaccinatie met een interval van 4-6 weken en een booster 5 maanden na basisvaccinatie.

In geval van een verhoogd risico op infectie of van een onvoldoende opname van colostrum kan een extra eerste injectie gegeven worden op de leeftijd van 4 maanden, gevolgd door het tweede vaccinatieprogramma (basisvaccinatie vanaf 5 maanden en 4-6 weken later en gevolgd door de hervaccinaties).

Het alternender gebruik, met 12 maanden interval, van een geschikt vaccin tegen paardeninfluenza, de stammen Prague 56, Newmarket-1/93 en Newmarket-2/93 bevattend, wordt aanbevolen om de immuniteitniveaus voor de influenza...
ProteqFlu (Merial)  Equilis Frequenza (Intervet)  component te handhaven.

Toediening  Intramusculair

Bijwerkingen

Een voorbijgaande diffuse of harde zwelling (max. diameter van 5 cm) ter hoogte van injectieplaats.
Pijn en een lokale hyperthermie (uitzonderlijk).
Een lichte stijging van de temperatuur (max. 1,5 °C) gedurende 1 dag, uitzonderlijk gedurende 2 dagen.
Apathie en een verminderde eetlust de dag na vaccinatie (uitzonderlijk).
Overgevoeligheidsreactie (uitzonderlijk).

Waarschuwingen

Kan tijdens dracht en lactatie gebruikt worden.

Rabiës
Er zijn twee registraties in Nederland van vacins tegen Rabiës: Nobivac Rabiës en Vanguard R. Een opmerkelijk verschil is dat Nobivac adviseert te vaccineren vanaf een leeftijd van 6 maanden en dat Vanguard een adviesleeftijd hanteert vanaf 12 weken!
Vanguard is uitgebreider in zijn omschrijving van de bijwerkingen en specifieker in zijn vermelding van gebruik van het vaccin tijdens lactatie.
Opvallend is verder dat Nobivac voor paarden een herhalingsfrequentie aanhoudt van 2 jaar terwijl Vanguard bij hond en kat 3 jaar wordt geadviseerd.

Nobivac Rabiës (Intervet)  Vanguard R (Pfizer)
6 maand en ouder 12 weken en ouder

Werkzame bestanddelen
Geïnactiveerd rabiësvirus, stam Pasteur RIV  Geïnactiveerd rabiësvirus, stam SAD Vnukovo-32 min.

Adjuvants/hulpstoffen
2% Aluminiumfosfaat: 0,15 ml  Aluminium hydroxide 2,0 mg
Thiomersal 0,01% Thiomersal 0,1 mg, Water voor injectie

Dosering
2- Jaarlijks, na een enkelvoudige basisvaccinatie 2-Jaarlijks, na een enkelvoudige basisvaccinatie, gevolgd door een booster 1 jaar na de basisvaccinatie.

Toediening
Intramusculair Intramusculair of subcutaan

Bijwerkingen

Een lokale entreactie kan voorkomen.
Na subcutane toediening: voorbijgaande zwelling (max 7 mm) op injectieplaats eventueel gepaard gaande met een licht onaangenaam gevoel. Dit is gewoonlijk binnen 10 dagen verdwenen.
Na intramusculaire toediening: voorbijgaand onaangenaam gevoel op injectieplaats en, in zeldzame gevallen, gepaard gaande met zwelling. Dit is gewoonlijk binnen 7 dagen verdwenen.
Overgevoeligheidsreactie (incidenteel).

Kan tijdens de dracht en lactatie worden gebruikt.

Rhinopneumonie
Er zijn 2 losse vacins tegen Rhinopneumonie; Pneumequine en Equip EHV 1,4. De fabrikanten spreken allebei van een afname van de klinische verschijnselen en geven geen garantie van bescherming tegen het virus.
Intervet is een stuk uitgebreider met de vermelding van bijwerkingen van het vaccin Equilis Resequin. Opvallend is dat geen van de bijsluiters vermeldt hoe lang de verkregen immuniteit is, maar omdat de herhalingsvaccinaties halfjaarlijks dienen te zijn, mogen we er van uit gaan dat actieve immunisatie na vaccinatie <6 maanden bedraagt.

Naast deze losse vaccins zijn er twee combinatievaccins; Equilis Resequin (combinatie met stammen paardeninfluenza) en Resequin Plus; dit laatste vaccin biedt naast Rhinopneumonie bescherming tegen 3 types paardeninfluenza en 2 types reovirus. Deze worden op blz. 82 en 83 vermeld.

### Pneumequine (Merial)
- **Dosering**: Halfjaarlijks, na een 3-voudige enting met een interval van 1 maand tussen de 1e en de 2e enting en met een interval van 6 maanden tussen de 2e en 3e enting.

### Equip EHV 1,4 (Pfizer)
- **Dosering**: Halfjaarlijks, na een 2-voudige basisvaccinatie met een interval van 4-6 weken vanaf de leeftijd van 5-6 maanden. Vóór die leeftijd: enkelvoudige vaccinatie op de leeftijd van 3-4 maanden gevolgd door bovenstaand vaccinatieschema. Als hulpmiddel ter vermindering van abortus: 3-voudige vaccinatie op de 5e, 7e en 9e maand van iedere dracht.

### Indicaties
- Actieve immunisatie van paarden vanaf de leeftijd van 4 maanden tegen respiratoire aandoeningen veroorzaakt door equine herpesvirus type 1 (rhinopneumonie).
- Partiële actieve immunisatie ter vermindering van de ernst van respiratoire ziekteverschijnselen veroorzaakt door Equine Herpesvirus typen 1 en 4.
- Actieve immunisatie van drachtige merries ter vermindering van abortus veroorzaakt door Equine Herpesvirus type 1.

### Toediening
- Diep intramusculair

### Bijwerkingen
- Een voorbijgaande lokale entreactie kan voorkomen.

### Waarschuwingen
- Genesmiddel bevat minerale olie. Injectie/ zelfinjectie kan ernstige pijn en zwelling tot gevolg hebben, vooral in geval van injectie in een gewricht of vinger. Zonder snel medisch ingrijpen kan dit in zeldzame gevallen leiden tot verlies van de betrokken vinger.
- Merries niet vaccineren in de week vóór en gedurende 21 dagen na het dekken.

### Tetanus
Er zijn drie losse vaccins: Tetanus-serum, Equilis tetanus vaccin, Equilis TE, alle van Intervet. Het Tetanus-Serum vaccin is ter stimulatie van passieve immunisatie tegen tetanus. Er wordt op de internationale website van Intervet een minimum leeftijd van 6 maanden oud vermeld alsook dat het aluminiumhydroxide bevat (de registratie vermeldt deze informatie niet).

Het Equilis tetanus vaccin en Equilis TE zijn beide ter stimulatie van actieve immunititeit tegen tetanus. Beide vaccins bevatten Clostridium tetani toxoid.

### Beschikbare vaccins: (zie ook hoofdstuk combinatievaccins blz. 84).

<table>
<thead>
<tr>
<th>Tetanus-serum Intervet (Intervet)</th>
<th>Equilis tetanus vaccin (Intervet)</th>
<th>Equilis TE (Intervet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 maand en ouder</td>
<td>4 maand en ouder</td>
<td>6 maand en ouder</td>
</tr>
</tbody>
</table>

### Werkzame bestanddelen

- **Tetanus-serum Intervet** (Intervet)
  - Per ml serum max. 170 mg paardenewit (Paardenimmun-globuline concentraat) en min. 1000 IE tetanusantitoxine
  - Clostridium tetani toxoid
  - Clostridium Tetanus toxoid 40 Lf

<table>
<thead>
<tr>
<th>Pneumequine (Merial)</th>
<th>Equip EHV 1,4 (Pfizer)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 maand en ouder</td>
<td>3 maand en ouder</td>
</tr>
</tbody>
</table>

| Werkzame bestanddelen
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Glycoproteïnen van Equine Herpesvirus (EHV) type 1, stam Kentucky</td>
</tr>
<tr>
<td>Lichte paraffineolie</td>
</tr>
<tr>
<td>Thiomersal ≤0,1 mg, Polyoxylethyleen vetzuren, Ether van vetalcoholen en van polyolen, Triethanolamine, PBS-buffer</td>
</tr>
</tbody>
</table>

| Doosering
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Halfjaarlijks, na een 3-voudige enting met een interval van 1 maand tussen de 1e en de 2e enting en met een interval van 6 maanden tussen de 2e en 3e enting.</td>
</tr>
</tbody>
</table>

| Indicaties
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Actieve immunisatie van paarden vanaf de leeftijd van 4 maanden tegen respiratoire aandoeningen veroorzaakt door equine herpesvirus type 1 (rhinopneumonie).</td>
</tr>
</tbody>
</table>

| Toediening
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Diep intramusculair</td>
</tr>
</tbody>
</table>

| Bijwerkingen
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Geneesmiddel bevat minerale olie. Injectie/ zelfinjectie kan ernstige pijn en zwelling tot gevolg hebben, vooral in geval van injectie in een gewricht of vinger. Zonder snel medisch ingrijpen kan dit in zeldzame gevallen leiden tot verlies van de betrokken vinger. Merries niet vaccineren in de week vóór en gedurende 21 dagen na het dekken.</td>
</tr>
</tbody>
</table>

| Waarschuwingen
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Merries niet vaccineren in de week vóór en gedurende 21 dagen na het dekken.</td>
</tr>
</tbody>
</table>
### Tetanus-serum Intervet (Intervet)

<table>
<thead>
<tr>
<th>Adjuvantia/hulpstoffen</th>
<th>Tetanus-serum Intervet (Intervet)</th>
<th>Equilis tetanus vaccin (Intervet)</th>
<th>Equilis TE (Intervet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminiumhydroxide</td>
<td>Aluminiumhydroxide, Natriumtimerfonaat, Natrium-chloride, Water voor injectie</td>
<td>Gezuiverd saponine, Cholesterol, Fosfattydroxolose, Lactose, Fosfaat-buffer, Chloridebuffer, Formaldehyde</td>
<td></td>
</tr>
</tbody>
</table>

#### Dosering

2-Jaarlijks na 3-voudige basisvaccinatie met interval van 4-8 weken tussen de 1e en 2e vaccinatie en met een interval van 6 maanden tussen de 2e en 3e vaccinatie.

#### Opmerking:

Wij vermoeden dat dit serum in Nederland alleen therapeutisch gebruikt wordt aangezien er geen vaccinatieschema in de registratie wordt vermeld.

#### Toediening

Preventief: intramusculair of subcutaan

Intramusculair

Therapeutisch: epiduraal, intraveneus, intramusculair of subcutaan.

#### Bijwerkingen

Een lokale vaccinatiereactie alsook een overgevoeligheidsreactie.

#### Waarschuwingen

De veiligheid is niet bewezen tijdens dracht. Kan tijdens dracht en lactatie worden gebruikt.

---

### West Nijl Virus

Er zijn twee vaccins tegen het West Nijl Virus geregistreerd in Nederland; Duvaxyn WNV en Proteq West Nile. Beide vaccins pretenderen een immuniteit van 1 jaar, hoewel het vaccinatieschema niet volledig gevalideerd is.

#### Duvaxyn WNV (Pfizer)

<table>
<thead>
<tr>
<th>Werkzame bestanddelen</th>
<th>Proteq West Nile (Merial)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geinactiveerd West Nile Virus, stam VM-2</td>
<td>West Nile recombinant kanariepokken virus (vCP2017)</td>
</tr>
<tr>
<td>MetaStim™ (SP Olie) 0,05 ml MEM (Minimum Essentieel Medium)</td>
<td>Carbomeer 4 mg Natriumchloride, Dinatriumfosfaatdihydraat, Kaliumdihydrogeenfosfaat, Water voor injectie</td>
</tr>
</tbody>
</table>

#### Dosering

Jaarlijks, na een 2-voudige basisvaccinatie met een interval van 3-5 weken

Jaarlijks, na een 2-voudige basisvaccinatie met een interval van 4-6 weken

Een voldoende mate van bescherming zou verkregen moeten worden met een jaarlijkse hervaccinatie, ondanks dat dit schema niet volledig gevalideerd is. Duur van immuniteit: 12 maanden na de basisvaccinatie

#### Indicatie

Voor de actieve immunisatie door vermindering van het aantal viraemische paarden

Indien klinische symptomen optreden, dan zijn hun duur en ernst verminderd.

#### Toediening

(Diep) Intramusculair (nekk)

#### Bijwerkingen

Voorbijgaande zwelling (1 cm) op injectieplaats (verdwijnt 1-2 dagen).

Voorbijgaande zwelling (5 cm) op injectieplaats (verdwijnt binnen 4 dagen).

Pijn en een lokale hyperthermie (zelfdaam).

Lichte temperatuursverhoging (max. 1.5 °C) gedurende 1 dag, uitzonderlijk 2 dagen.

---

### Equilis tetanus vaccin (Intervet)

<table>
<thead>
<tr>
<th>Adjuvantia/hulpstoffen</th>
<th>Tetanus-serum Intervet (Intervet)</th>
<th>Equilis tetanus vaccin (Intervet)</th>
<th>Equilis TE (Intervet)</th>
</tr>
</thead>
</table>

#### Dosering

2-Jaarlijks na 3-voudige basisvaccinatie met interval van 4-8 weken tussen de 1e en 2e vaccinatie en met een interval van 6 maanden tussen de 2e en 3e vaccinatie.

#### Opmerking:

In geval van verhoogd infectierisico of onvoldoende colostruminname kan een aanvullende initiële injectie gegeven worden op de leeftijd van 4 maanden gevolgd door het volledige vaccinatie programma.

Het vaccin kan gelijktijdig gebruikt worden met Tetanus Serum van Intervet voor de behandeling van gewonde paarden die niet geïmmuniseerd zijn tegen tetanus.

#### Toediening

Preventief: intramusculair of subcutaan

Intramusculair

Therapeutisch: epiduraal, intraveneus, intramusculair of subcutaan.

#### Bijwerkingen

Een lokale vaccinatiereactie alsook een overgevoeligheidsreactie.

#### Waarschuwingen

De veiligheid is niet bewezen tijdens dracht. Kan tijdens dracht en lactatie worden gebruikt.
Apathie (verdwijnt gewoonlijk binnen 2 dagen), en een verminderde eetlust dag na vaccinatie.
Overgevoeligheidsreactie (soms).

Opmerking: opvallend is dat Merial (Proteq West Nile) dezelfde bijwerkingen vermeldt als die bij de ProteqFlu en ProteqFlu-te.

Waarschuwingen

Kan tijdens de dracht en lactatie worden gebruikt.
De veiligheid van het vaccin werd aangetoond in veulens van 5 maanden oud. Het vaccin is echter veilig gebleken in een veldstudie met ondermeer dieren van 2 maanden oud. Vaccinatie kan interfereren met bestaande sero-epidemiologische onderzoeken. Echter, gezien er zelden een IgM respons na vaccinatie volgt, is een positief IgM-ELISA testresultaat een sterke aanwijzing voor een natuurlijke infectie met het West Nile Virus. Indien het vermoeden bestaat, naar aanleiding van een postieve IgM respons, dat er sprake is van een infectie, dienen aanvullende tests te worden uitgevoerd om aan te tonen of het dier geïnfecteerd is of gevaccineerd is.

Combinatievaccins

Influenza en Rhinopneumonie

Equisil Resequin
(Intervet)
6 maand en ouder
Werkzame bestanddelen
Geïnactiveerd:
Equine Herpesvirus type 1 (EHV1), stam RAC-H
Equine Herpesvirus type 4 (EHV4), stam 2252
Equine influenza virus:
  - stam A/equi 1/Praag/1/56
  - stam A/equi 2/Newmarket/1/93 (Amerikaans type)
  - stam A/equi 2/Newmarket/2/93 (Europees type)

Adjuvanta/hulpsstoffen
Aluminiumhydroxide 15 ml, Immunostim 40 ml
Natriumtimerfonaat 50 mg, PBS, Formaldehyde

Doserings
Halfjaarlijks, na een 2-voudige basisvaccinatie met een interval van 6 weken, gevolgd door een 3e vaccinatie 2-6 maanden later.
Als vaccinatie vóór de leeftijd van 6 maanden beoogd wordt, moeten de dieren getest worden op de afwezigheid van maternale antilichamen, maar veulens dienen bij vaccinatie tenminste 4 maanden oud te zijn.

Toediening
Diep intramusculair in nek of borst

Bijwerkingen
Equisil Resequin is een vaccin met adjuvanta wat kan resulteren in tijdelijke zwellingen op de injectieplaats (in sommige gevallen).
Platte zwellingen tot 7 cm, grotere zwellingen zijn zeer zeldzaam, die geen hinder veroorzaken en binnen 1-2 twee weken verdwijnen.
Verhoging van de lichaamstemperatuur tot 1,5 °C op de dag na de vaccinatie (soms).

Overgevoeligheidsreacties, veroorzaakt door van het ei afkomstige bestanddelen in het vaccin (soms).

Waarschuwingen
Kan gebruikt worden tijdens dracht en lactatie.
Alle paarden in een groep dienen gevaccineerd te worden (groepsimmuniteit) om infectiedruk binnen de populatie te verminderen. Tenminste de eerste twee vaccinaties van het basisvaccinatieschema dienen gegeven te zijn aan een nieuw paard voordat het in een stal geplaatst wordt, voor een verandering van stal en voordat aan wedstrijden en races deel wordt genomen.
Om de door het vaccin geïnduceerde bescherming tegen EHV en EIV te optimaliseren moet aan de volgende vereisten worden voldaan:
- Geregelde vaccinaties van de hele groep.
- Vermijd introductie van ongeïmmuniseerde of zieke paarden in correct geïmmuniseerde groepen.
**Influenza, Rhinopneumonie en Reovirus**

De naam Reovirus staat voor Respiratory Enteric Orphan Virus. De uitdrukking "Orphan" ("wees") verwijst naar het gegeven dat, toen het virus voor het eerst werd beschreven, er geen associatie was met enige ziekte. Er zijn nu diverse ziektebeelden toe te wijzen aan reovirussen maar geen specifieke ziektes. Dit is ook waarom wij er voor gekozen hebben de informatie over dit virus onder het hoofdstuk "vaccins" te vermelden.

Onderstaand vaccin is het enige vaccin dat reovirussen bevat. Gezien de milde symptomen die reovirussen kunnen veroorzaken lijkt ons dit een tamelijk overbodig aanvulling.

De meeste reovirussen van het geslacht orthoreovirussen zijn niet pathogeen, behalve de reovirussen behorende tot het geslacht orbivirussen (Blauwtong, Afrikaanse paardenpest). Reovirussen kunnen zich vermeerderen in het gastro-intestinaal epithelweefsel en epithelweefsel van conjunctiva en het ademhalingsstelsel. Er treden echter geen infecties op in maag/darmkanaal als gevolg van deze virussen noch is er sprake van een systemische infectie. Ziekteverschijnselen kunnen zijn: waterige uitscheiding uit ogen en neus, bindvliesontsteking, nasale hyperemie en soms hoest. Gewoonlijk blijft de lichaamstemperatuur normaal. Reovirussen zijn endemisch onder paarden.

<table>
<thead>
<tr>
<th><strong>Resequin Plus</strong></th>
<th>(Intervet)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>4 maand en ouder</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Werkzame bestanddelen</strong></td>
<td></td>
</tr>
<tr>
<td>Geïnactiveerde paardeninfluenza virusstammen</td>
<td></td>
</tr>
<tr>
<td>- A/Equi1/Praag/1/56 (H7N7)</td>
<td></td>
</tr>
<tr>
<td>- A/Equi2/Miami/63 (H3N8)</td>
<td></td>
</tr>
<tr>
<td>- A/Equi2/Fontainebleau/1/79 (H3N8)</td>
<td></td>
</tr>
<tr>
<td>Geïnactiveerd equine herpesvirus type 1, stam RAC-H</td>
<td></td>
</tr>
<tr>
<td>Geïnactiveerd equine herpesvirus type 4, stam 2252</td>
<td></td>
</tr>
<tr>
<td>Geïnactiveerd reovirus serotype 1, stam T98</td>
<td></td>
</tr>
<tr>
<td>Geïnactiveerd reovirus serotype 3, stam Dearing</td>
<td></td>
</tr>
<tr>
<td><strong>Adjuvantia/hulpstoffen</strong></td>
<td></td>
</tr>
<tr>
<td>Aluminiumhydroxide 15,0 mg</td>
<td></td>
</tr>
<tr>
<td>Geen vermelding van hulpstoffen</td>
<td></td>
</tr>
<tr>
<td><strong>Dosering</strong></td>
<td></td>
</tr>
<tr>
<td>Halfjaarlijks, na een 3-voudige basisenting met een interval van 2 maanden tussen de 1e en de 2e enting en met een interval van 4 maanden tussen de 2e en 3e enting.</td>
<td></td>
</tr>
<tr>
<td>Drachtige merries: 2-voudige enting met een interval van 6 maanden op de 3e en 9e maand van de dracht.</td>
<td></td>
</tr>
<tr>
<td>Na enting met dit middel volgens voorschrift is een immunitéit van 4 maanden na basisvaccinatie aannemelijk gemaakt.</td>
<td></td>
</tr>
<tr>
<td><strong>Indicatie</strong></td>
<td></td>
</tr>
<tr>
<td>Actieve immunisatie van paarden vanaf de leeftijd van 4 maanden tegen aandoeningen veroorzaakt door paarden-influenza virusstammen A/Equi1/Praag/56 (H7N7), A/Equi2/Miami/63 (H3N8) en A/Equi2/Fontainebleau/1/79 (H3N8).</td>
<td></td>
</tr>
<tr>
<td>Partiële actieve immunisatie van paarden vanaf de leeftijd van 4 maanden met vermindering van de ernst van de aandoeningen veroorzaakt door equine herpesvirus typen 1 en 4.</td>
<td></td>
</tr>
<tr>
<td>Partiële actieve immunisatie van paarden vanaf de leeftijd van 4 maanden ter vermindering van de ernst van de respiratoire aandoeningen veroorzaakt door reovirus typen 1 en 3</td>
<td></td>
</tr>
<tr>
<td><strong>Toediening</strong></td>
<td></td>
</tr>
<tr>
<td>Intramusculair</td>
<td></td>
</tr>
<tr>
<td><strong>Bijwerkingen</strong></td>
<td></td>
</tr>
<tr>
<td>Lokale entreactie kan voorkomen.</td>
<td></td>
</tr>
<tr>
<td><strong>Waarschuwingen</strong></td>
<td></td>
</tr>
<tr>
<td>Kan tijdens dracht en lactatie gebruikt worden.</td>
<td></td>
</tr>
<tr>
<td>Met betrekking tot reovirus type 3 is uitsluitend de inductie van antistoffen na vaccinatie met dit middel volgens voorschrift aangetoond.</td>
<td></td>
</tr>
</tbody>
</table>
### Influenza en Tetanus

<table>
<thead>
<tr>
<th>Duvaxyn IE plus T (Elanco)</th>
<th>Equilis Equenza T (Intervet)</th>
<th>Equilis Frequenza Te (Intervet)</th>
<th>Equip FT (Pfizer)</th>
<th>Prevacun NT (Intervet)</th>
<th>ProteqFlu-TE (Merial)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 maand en ouder</td>
<td>4 maand en ouder</td>
<td>6 maand en ouder</td>
<td>5 maand en ouder</td>
<td>4 maand en ouder</td>
<td>5-6 maand en ouder</td>
</tr>
</tbody>
</table>

#### Werkzame bestanddelen
- Clostridium tetani toxoid
- Antigenen bereid uit paardeninfluenza-stammen A/equi/
- Clostridium tetani toxoid
- Antigenen bereid uit paardeninfluenza-stammen A/equi/
- Tetanus toxoid
- Gezuiverde haemaglutinine subunits uit paardeninfluenza virussen A/equi/
- Clostridium tetani toxoid
- Geincativeerd paardeninfluenza-stammen A/equi/
- Clostridium Tetani Toxoid
- Geincativeerd paardeninfluenza-stammen A/equi/

#### Adjuvanta/hulpstoffen
- Aluminiumhydroxide
- Carbomeer 934 P
- Kaliumfosfaat
- Dinatriumfosfaat
- Dinatriumdifosfaat
- Water voor injectie
- Saponine (gezuiverd Quillaia)
- Gezuiverd saponine, Cholesterol, Fosfatidylcholine, Lactose, Fosfaatbuffer, Chloridebuffer, Thiomersal, Formaldehyde
- Quil A, Aluminiumfosfaat, Fosfatidylcholine, Cholesterol, Ammonium acetaat, Dinatriumhydrofosfaat, Kaliumdifosfaat, Natrumchloride, Kaliumchloride
- Aluminium hydroxide, Natriumfarinaat, Formaldehyde
- Carbomeer, Natrumchloride, Dinatriumwaterstof-orthofosfaat, Monokaliumfosfaat anhydraat, Water voor injectie

#### Dosering
- Jaarlijks na 4-voudige basisvaccinatie vanaf de leeftijd van 5 mnd. met een interval van 4-6 weken tussen de 1e en de 2e vaccinatie en met een interval van 6 maanden tussen de 2e en 3e vaccinatie.
- Jaarlijks mbt tetanus en halfjaarlijks mbt influenza na 3-voudige basisvaccinatie met een interval van 4 weken tussen de 1e en de 2e vaccinatie en met een interval van 6 maanden tussen de 2e en 3e vaccinatie.
- Jaarlijks mbt influenza na 2-voudige basisvaccinatie met een interval van 4-6 weken en een booster na 5 maanden.
- 2-jaarlijks mbt tetanus na booster na 17 maanden na basisvaccinatie.
- Jaarlijks mbt influenza, na een 3-voudige basisvaccinatie, met een interval van 4-6 weken tussen de 1e en de 2e vaccinatie en met een interval van 5-7 maanden tussen de 2e en 3e vaccinatie.
- Jaarlijks na 3-voudige basisvaccinatie, met een interval van 4-6 weken en een booster 5 maanden na de
Indicaties

A/equi/: 1/Praag/56 (H7N7), 2/Suffolk/89 (H3N8) 2/South Africa/4/03: immunitie duur van 6 maanden is aannemelijk gemaakt. Immunitieduur van enkele maanden is aannemelijk gemaakt. De fabrikant vermeldt niet letterlijk dat dit voor influenza geldt, maar wij vermoeden van wel.

A/equi/1/Praag/56 (H7N7): immunitie duur van 2 maanden is aannemelijk gemaakt na 2-voudigeenting. Opmerking: er wordt door de fabrikant geen verdere informatie verschaft over de immuniteit m.b.t. de virusstammen Miami en Fontaine-bleau. Immunitie duur van 2 maanden is onderbouwd.

A/equ/2/Newmarket/1/93 (H3N8) en A/equ/2/Newmarket/1/93 (H3N8): immunitie duur van 1 maand is onderbouwd (na 2-voudige vaccinatie)

Toediening

Intramusculair Intramusculair Intramusculair Intramusculair Intramusculair

Bijwerkingen

Lokale entreactie Diffuse, harde of zachte zwelling (max 5 cm) op injectieplaats, afnemend binnen 2 dagen. Pijn op de injectieplaats (zeldzaam), resulterend in tijdelijk functioneel ongemak (stijfheid). Koorts, soms gelijktijdig met apathie en anorexia, gedurende 1 dag (zeer zeldzaam), of gedurende 3 dagen (uitzonderingsgeval).

Tijdelijke verhoging van de lichaamstemperatuur. Overgevoeligheidsreactie. Lichte stijging van temperatuur (max. 1,5 °C) gedurende 1 dag, uitzonderlijk gedurende 2 dagen. Dag na vaccinatie: apathie en anorexia (uitzonderlijk). Overgevoeligheidsreactie (uitzonderlijk).

Waarschuwingen

Kan tijdens dracht worden gebruikt. Stress vermijden bij vaccineren hoogdrachtige merries. Stress brengt in de late dracht een risico met zich mee wanneer gevaccineerd. Er zijn tijdens de dracht of lactatie geen andere bijwerkingen te verwachten dan vermeld.


Mogelijk betekent dit dat het vaccin kruisbescherming biedt tegen deze nieuwere stam.

Kan tijdens dracht en lactatie worden gebruikt. Stress vermijden bij vaccineren hoogdrachtige merries. Stress brengt in de late dracht een risico met zich mee wanneer gevaccineerd. Er zijn tijdens de dracht of lactatie geen andere bijwerkingen te verwachten dan vermeld.

Kan tijdens dracht worden gebruikt. Stress vermijden bij vaccineren hoogdrachtige merries. Stress brengt in de late dracht een risico met zich mee wanneer gevaccineerd. Er zijn tijdens de dracht of lactatie geen andere bijwerkingen te verwachten dan vermeld.
ADJUVANTIA EN HULPSTOFFEN IN VACCINS
Opzet naar voorbeeld van de Nederlandse Vereniging Kritisch Prikken, door ons aangepast aan de veterinaire vaccins.

1) Kweek-medium
Bij het vervaardigen van vaccins voor dieren worden vaak celculturen gebruikt van oorspronkelijk dierlijke cellen. Zoals we al eerder hebben uitgelegd kunnen tegenwoordig die celculturen steeds weer gebruikt worden en zijn er geen nieuwe proefdieren nodig om een cellijn in stand te houden. Daarbij maakt men gebruik van DNA-technieken. Voorbeelden zijn kippenembryocellen (delen van bebroede kippeneieren) en kalfsniercellen.

2) Adjuvantia (Latijn: adiuvare= helpen)
Adjuvantia zijn hulpstoffen in vaccins die de immuunrespons tegen de actieve component in een vaccin, het antigen, verbeteren.

De meeste adjuvantia zijn metalen (met name aluminium), saponinen (verzamelnaam voor een groep van plantaardige glycosiden die met water schuim geven als zeepwater), olie en olie-emulsies.

Aluminiumfosfaat en aluminiumhydroxide waren decennia lang de enige adjuvantia die op grote schaal werden toegepast. Hoe aluminiumzouten precies werken is niet duidelijk. Ze zijn mogelijk verantwoordelijk voor de pijnklachten na de vaccinatie. Bij blootstelling aan hoge concentraties aluminiumionen gedurende lange tijd is bij mensen aangetoond dat aandoeningen kunnen ontstaan aan het zenuwstelsel, zoals diverse vormen van dementie, (tijdelijk) geheugenverlies, trillerigheid en lusteloosheid.

Adjuvantia zijn nodig voor antigenen die zwak immunogeen zijn. Water-in-olie-emulsies zijn op grote schaal klinisch getest in de VS in humane vaccins tegen het adeno-, polio- en influenzavirus. Het werkingsmechanisme is gebaseerd op een sterke depotfunctie (de niet-metaboliseerbare olie blijft lang aanwezig in de injectieplek) en het induceren van een ontstekingsreactie.

(bron: RIVM)

3) Hulpstoffen
De houdbaarheid van vaccins wordt verhoogd door het toevoegen van conserveringsmiddelen in verschillende fasen van het productieproces.

A. Conserveringsmiddelen:
   a. Formaldehyde (1x hond, 1x kat, 2x paard).
      Wordt gebruikt om ziekteverwekkers te inactiveren / doden, en om anatomische preparaten te bewaren (op sterk water staan). Formaldehyde is bewezen kankerverwekkend. Geeft veel allergieklachten.
   b. Thiomersal (kwikverbinding) (11x hond, -x kat, -x paard).
      Deze kwikverbinding is bedoeld om schimmels en bacteriën uit te schakelen en zijn neurotoxisch. Allergische klachten komen frequent voor. Het RIVM zegt dat de toevoeging van Thiomersal geen probleem is en dat het een halfwaardetijd heeft van 7 dagen, oftewel: dat na 7 dagen de helft van deze stof uit het bloed verdwenen is.
Volgens prof. Janna Koppe, emeritus hoogleraar neonatologie van de Universiteit van Amsterdam, is deze informatie niet volledig: wat het RIVM niet zegt, is dat de halfwaardetijd voor de hersenen meer dan drie keer zo lang is. Het duurt namelijk 24 dagen voor de helft van deze stof uit de hersenen verdwenen is.

Dr. Hugh Fudenberg, immunogeneticus, stelt in zijn onderzoek tussen 1970 en 1980 dat als een persoon vijf achtereenvolgende griepprikken heeft gekregen in deze periode van onderzoek, de kans op het verkrijgen van Alzheimer met een factor TIEN is toegenomen, in vergelijk tot het krijgen van twee of helemaal geen griepprik.

Dokter Fudenberg verklraat dat dit komt door de aanwezigheid van kwik en aluminium in de griepprik. Het geleidelijk toenemen van de hoeveelheid kwik en aluminium in de hersenen veroorzaakt cognitieve dysfunctie.

In een griepprik zit ongeveer 25 microgram kwik, 1 microgram staat te boek als giftig. Bron: http://www.amalgaam.be/

c. Alle E-nummers van 200-252, waaronder Sorbinezuur E200 (tegen schimmels en gisten).

d. Zoutzuur (E507).
   WORDT NER ALS ZODANIG GENOemd IN DE HONDEN- EN KATTENVACCINS, MAAR KOMT WEL VOOR IN DE VORM VAN MAGNesiumchloride hexahydraat en calciumchloride.

B. Stabilisatoren
   Ook worden stabilisatoren gebruikt in vaccins. Een stabilisator is een stof die een chemische reactie vertraagt of opheft. Door ze aan producten toe te voegen worden deze beter c.q. langer houdbaar; het product is dan beter bestand tegen hitte, licht, zuren en vocht. Voorbeelden van stabilisatoren in vaccins zijn:
   a. Sorbitol (10x hond, 8x kat, -x paard)

   b. Gelatine (8x hond, 6x kat, -x paard)
      Geleermiddel, wateroplosbaar, verteerbaar en vormt een gel die sterk, flexibel en transparant is.

C. Zuurgraad
   Bij een vaccin worden stoffen gebruikt om de zuurgraad te controleren dan wel te beïnvloeden. Een pH-indicator is een chemische stof die van kleur verandert bij een veranderende zuurgraad (pH).

D. Antivries
   Vaccins dienen gekoeld bewaard te worden. De nagestreefde bewaartemperatuur is tussen de 2 °C en 8 °C. Een stof die hiervoor wordt gebruikt is:
   a. Ethyleen (glycerol) (1x hond, 3x kat, -x paard)
      Deze stof wordt gebruikt als basisstof voor antivries. Hierin zijn diverse additieven toegevoegd zoals anti-corrosiemiddel en anti-schuimmiddel. Ethyleenglycol is een kleurloze, stroperige alcohol. Het is schadelijk bij opname door de mond. Inslikken kan het centrale zenuwstelsel beschadigen, nier en leverstoringen en zelfs de dood veroorzaken. Irriterend voor de ogen, de ademhalingswegen en de huid.
4) **Antibiotica**

Antibiotica worden vaak toegevoegd in vaccins om bacteriële infecties te voorkomen. Resistentie en allergieën voor antibiotica komen steeds vaker voor. In sommige kattenvaccins wordt gebruik gemaakt van gentamicine.

**Adjuvanta en hulpstoffen van A-Z**

Hieronder worden de adjuvanta en hulpstoffen die we in de bijsluiters en registraties tegenkwamen op alfabetische volgorde (nader) benoemd en uitgelegd. De getallen tussen haakjes geven aan hoe vaak wij deze adjuvans of hulpstof tegenkwamen in de samenstelling van de vaccins.

**Aluminiumfosfaat** (2x hond, -x kat, 2x paard)
Adjuvans. Hoe aluminiumzouten precies werken is niet duidelijk. Ze zijn mogelijk verantwoordelijk voor de pijnklachten na de vaccinatie. Bij blootstelling aan hoge concentraties aluminium ionen gedurende lange tijd is bij mensen aangetoond dat aandoeningen kunnen ontstaan aan het zenuwstelsel, zoals diverse vormen van dementie, (tijdelijk) geheugenverlies, trillerigheid en lusteloosheid.

**Aluminiumhydroxide** (5x hond, 2x kat, 7x paard)
Adjuvans. Voorproduct van aluminium. Zelfde bijwerkingen als aluminiumfosfaat

**Antifoam SAG471** (1x hond, -x kat, -x paard)
Antischuimmiddel; vaak gebruikt als additief in antivries. Schuim is een massa luchtbellen die ontstaat wanneer bepaalde types gas in een vloeistof geperst worden. Sterke vloeistoflagen omringen dan de luchtbellen, waardoor er grote hoeveelheden niet-productief schuim gevormd worden. Waarom schuim ontstaat is nog niet helemaal duidelijk, maar het is wel bekend dat schuim problemen veroorzaakt bij industriële processen en bij de kwaliteit van de gevormde producten.

Dit antischuimmiddel bevat polydimethylsiloxaan (E900), zijnde een schuimonderdrukker en hulpmiddel voor glansmiddelen. Veel gebruikt in jam, wijn, vruchtensappen, melkpoeder, suiker, olie en likeuren. Het is gemaakt uit siliconen die ook voor borstimplantaten worden gebruikt! Een rapport beweert dat dit additief sporen van asbest zou kunnen bevatten. Risico’s: nier-, lever-, zenuwstelselaandoeningen en allergieën. Daarnaast zou dit additief als kankerverwekkend gelden want het zou sporen van E240, formaldehyde, kunnen bevatten.

**Calciumchloride (dihydraat)** (E509) (3x kat, 2x hond, -x paard)
Zuurteregelaar. Calciumchloride (CaCl\(_2\)) is het calciumzout van zoutzuur. Het lost erg goed op in water en is hygroscopisch (stoffen die uit de lucht waterdamp aantrekken en daardoor gaan knorren of zelfs geheel vervloeien). Bij kamertemperatuur is het een vaste stof. Calciumchloride (dihydraat) is schadelijk bij inslikken en inademen. Het is een afvalproduct van bepaalde industriële procedés. Het tast vele metalen en bouwmaterialen aan. Het kan irritatie geven aan aderen, longen, maag-darmkanaal en ander weefsel.

**Carbomeer** (-x hond, 1x kat, 4x paard)

**Carbopol** (-x hond, -x kat, 1x paard)
Merknaam. Zie carbomeer

**Caseïne hydrolysate** (acid hydrolysate (casein)) (8x hond, 7x kat, -x paard)
Caseïne pepton (pancreas hydrolysaat) (3x hond, -x kat, -x paard)
Kweekmedium.

Chloridebuffer (-x hond, -x kat, 3x paard)
Stabilisator? Zouten van waterstofchloride.

Cholesterol (-x hond, -x kat, 3x paard)
Wordt samen met saponine en fosfatidylcholine gebruikt als adjuvans. Op zichzelf staand wekt het geen immuunrespons op.
Cholesterol vormt een deel van het celmembraan bij dieren, waar het de vloeibaarheid bepaalt.
Bovendien doet het dienst als signaalmolecule en bevordert het de communicatie met andere cellen.
Een virus maakt gebruik van het celmembraam/envelop.
Zie ook fosfatidylcholine.

Collageen hydrolysaat (gelatine) (4x hond, 6x kat, -x paard)
Zie gelatine

Dextraan (6x hond (waarvan 1x Dextran 40), 6x kat (alle Dextran 40), -x paard)
Is een polysacharide (koolhydraten die zijn opgebouwd uit een groot aantal monosacharideeenheden) opgebouwd uit glucosemoleculen. Het wordt verkregen uit scharlose door enzymatische omzetting met behulp van de bacterie Leuconostoc Mesenteroides. Het wordt o.a. gebruikt als antistollingsmiddel.
De WHO heeft geadviseerd partijen mazelenvaccin (humaan), geproduceerd door Chiron in Italië, te vernietigen na berichten van allergische reacties na vaccinatie. De vermoedelijke oorzaak van deze allergische reacties is de aanwezigheid van dextraan in het vaccin. In Nederland wordt dit vaccin niet gebruikt (bron: WHO).

Dikaliumfosfaat (E340 (II)) (3x hond, 7x kat, -x paard)
Synoniemen: Dikaliyummonofosfaat, Secundair kaliumfosfaat, Zuur dikaliumfosfaat,
Dikaliyumorthofosfaat, Tweebasisch kaliumfosfaat.
Chemische naam: Dikaliyumwaterstofmonofosfaat, Dikaliyumwaterstoffosfaat,
Dikaliyumwaterstoforthofosfaat

Dinatriumdifosfaat (E450(i)) (-x hond, -x kat, 1x paard)
Zie Dinatriumfosfaat. Synthetische emulgator.
Bijwerkingen: volgens "Wat zit er in uw eten?" geeft het risico's op hyperactiviteit, verminderde opname van mineralen en darmstoornissen. Experimenten in Duitsland uit 1957 toonden aan dat ratten een verminderde groei, dalende vruchtbaarheid en kortere levensduur hadden.

Dinatriumfosfaat (dihydraat of watervrij) (E339(i)) (9x hond, 7x kat, 2x paard)
Synoniemen: Dinatriummonofosfaat, Tweebasisch natriumfosfaat. Dinatriumorthofosfaat,. Zuur dinatriumfosfaat.
Chemische naam: Dinatriumwaterstofmonofosfaat, Dinatriumwaterstoforthofosfaat
Antioxidant en voedingszuur. Wordt gebruikt als emulgator en als buffer om de pH van een voedingsmiddel te verhogen.
Reactieproduct van fosforzuur en natriumcarbonaat.

Dinatriumhydrofosfaat (-x hond, -x kat, 1x paard)
Zie Dinatriumfosfaat.
Dinatriumwaterstoffosfaatdihydraat (E339) (1x hond, -x kat, -x paard)
Voedingszuur en antioxidant gemaakt uit fosforzuur dat ook als hulpmiddel voor additieven wordt gebruikt. Dit additief heeft dezelfde bijwerkingen als Dinatriumfosfaat (watervrij).

Dinatriumwaterstoforthofosfaat (-x hond, 6x kat, 2x paard)
Zie Dinatriumfosfaat.

D-MEM (Dulbecco’s Modified Eagles Medium) (2x hond, -x kat, -x paard)
Anorganische zouten, vitaminen, aminozuren etc. Wordt gebruikt bij celkweek, als voedingsmiddelen voor cellen. Er zijn verschillende subtypes; wij hebben geen informatie kunnen vinden welk type de fabrikant (Intervet, Quantum Dog) precies heeft gebruikt.

Eagles Earles Kweekmedium.

Emulsigen SA (-x hond, 1x kat, -x paard)

Ether van vetalcoholen en van polyolen (1x hond, -x kat, 1x paard)

Polyolen zijn afgeleid van gewone suikers, ook wel suikeralcoholen genoemd.

Ethyleen/maleïnezuur anhydride (- hond, 3x kat, -x paard)
Adjuvans. Maleïnezuur is de triviale naam voor cis-buteendizuur: een ethyleen met daaraan twee carbonzuurgroepen. Industrieel wordt maleïnezuur bereid door hydrolyse van maleïnezuuranhydride. Maleïnezuuranhydride wordt gewonnen uit benzene of butaan door middel van oxidatie.

Maleïnezuuranhydride is sterk irriterend voor de ogen, de huid en de luchtwegen. Kortstondige inademing van de stof kan op astma lijkende reacties veroorzaken; herhaalde of langdurige blootstelling kan astma veroorzaken. De stof kan ook door de huid heen opgenomen worden. Veelvuldig huidcontact kan leiden tot huidontsteking. Het is een brandbare stof. Met amines en pyridines kan het hevig reageren; deze ontbindingsreacties kunnen explosief zijn.

Formaldehyde (1x hond, 1x kat, 2x paard)
Wordt gebruikt om ziekteverwekkers te inactiveren/doden, en om anatomische preparaten te bewaren (op sterk water staan). Formaldehyde is bewezen kankerverwekkend. Geeft veel allergieklachten.

Fosfaatbuffer (buffer) (2x hond, 2x kat, 3x paard)

Fosfatidylcholine (-x hond, -x kat, 3x paard)
Wordt samen met saponine en cholesterol gebruikt als adjuvans. Op zich zelf staand wekt het geen immunorespons op. Fosfatidylcholine is een belangrijk bestanddeel van lecithine en een krachtige emulgator van vetten die van nature in alle cellen aanwezig zijn. Het houdt vet en cholesterol in het bloed in oplossing, emulgeert vetten uit de voeding in de darm en speelt een belangrijke rol bij het in stand houden van de integriteit van de celmembran.

Gehydroliseerde gelatine caseinehydrolysaat (5x hond, 1x kat, -x paard)
Hydrolyse is de splitsing van een chemische verbinding onder opneming van water. Hydrolyse van de peptidebinding in eiwitten breekt de eiwitten af tot kleinere polypeptiden en uiteindelijk tot
aminozuren. Hydrolyse van collageen levert gelatine op.

**Gelatine** (E441) (4x hond, 12x kat, -x paard)
Geleermiddel, wateroplosbaar, verteerbaar en vormt een gel die sterk, flexibel en transparant is. Wordt als stabilisator in vaccins gebruikt.

Gelatine is een eiwitproduct dat wordt bereid door gedeeltelijke hydrolyse uit collageen. Collageen is een eiwit dat voorkomt in bindweefsels (onder andere huid, botten en kraakbeen) van zoogdieren. Gelatine wordt gewonnen door huiden en beenderen van met name biggen en koeien na hydrolyse langdurig te laten trekken in heet water en wordt als stabilisator gebruikt in vaccins. Gelatine wordt verantwoordelijk gehouden voor verschillende allergische reacties na vaccinatie, zoals urticaria, lokale entreacties en anafylactische shock.

**Gelatine-gebaseerde stabilisator** (1x hond, -x kat, -x paard)
Zie gelatine.

**Gentamicine** (-x hond, 6x kat, -x paard)
Gentamicine is een antibioticum met een breed werkingsspectrum tegen aerobe gramnegatieve micro-organismen. Het heeft belangrijke nevenwerkingen, het is namelijk bij overdosering giftig voor het gehoor (orgaan van Corti) en voor de nieren, die beide onomkeerbaar beschadigd kunnen worden. Om deze reden wordt gebruikt buiten het ziekenhuis vrijwel alleen uitwendig gebruikt (ooog- en oordruppels); bij inwendig gebruik dient geregelde controle of de concentratie in het bloed onder de gevaarlijke waarden blijft (piek- en dalspiegels) vaardoor het vrijwel alleen in het ziekenhuis toepassing vindt.

**Gemodificeerde Hartmann-oplossing** (1x hond, -x kat, -x paard)
Oplossing bestaande uit natriumchloride, kaliumchloride, natrium-L-lactaat, calciumchloride, water voor injectie.

**Gluciden in PBS** (1x hond, -x kat, -x paard)
PBS: Fosfaat gebufferde zoutoplossing; natriumchloride, natriumfosfaten en soms kaliumchloride en kaliumfosfaten. Help om pH constant te houden.
Gluciden: Ook wel koolhydraten genoemd, dit zijn alle soorten suikers, waaronder glucose, fructose en galactose.

**Glutaminezuur** (-x hond, 1x kat, -x paard) (E620)
Glutaminezuur is een natuurlijk voorkomend aminozuur maar kan ook synthetisch of door middel van fermentatie worden gemaakt. Dit E-nummer valt onder de categorie smaakversterkers.
Het is een stof die te maken heeft met prikkeloverdracht tussen transmitters/zenuwuiteinden. Bijwerkingen: volgens het boekje "wat zit er in uw eten?" zijn de risico's: verlies van gevoel in rug, nek en armen, cardiovasculaire aandoeningen, astma-aanvallen. Helpt de zuurgraad in vaccins op peil te houden.

**GMEM medium** (1x hond, -x kat, -x paard)
Zie Modified Eagle’s Medium.

**Immunostim** (-x hond, -x kat, 1x paard)
Adjuvans (Mycobacterial Cell Wall Fraction (MCWF) immune stimulating adjuvant).

**Kaliumchloride** (E508) (4x hond, 3x kat, 1x paard)
Kaliumchloride (KCl) is het chloridezout van kalium en komt van nature voor in het lichaam en speelt een rol bij het reguleren van het kloppen van het hart. Zowel een te hoge (hyperkalemie) als een te lage concentratie (hypokalemie) kaliumchloride kan gevaarlijk zijn. Een te hoge concentratie heeft hartkloppingen tot gevolg, een te lage concentratie verlaging van de klopsnelheid (bradycardie).

Het wordt gebruikt in medicijnen en ook als doedelijke injectie bij het uitvoeren van de doodstraf in Amerika. Het merendeel van de kaliumchloride wordt gebruikt bij het vervaardigen van kunstmest.
Bijwerkingen kunnen maagdarmklachten zijn: misselijkheid en braken, diarree en darmbloedingen. In grote hoeveelheden ingenomen kan het een hartstilstand veroorzaken.

**Kaliumdihydrofosfaat** (-x hond, -x kat, 1x paard)
Zie Kaliumdiwaterstoffosfaat.

**Kaliumdihydrogeenfosfaat** (4x hond, 10x kat, 1x paard)

**Kaliumdiwaterstoffosfaat** of KDP (-x hond, -x kat, 1x paard)
Zout van fosforzuur. Het zout is goed oplosbaar in water en wordt gebruikt als voedseladditief en als additief in sigaretten, kunstmest en schimmelbestrijder en als buffer in vaccins. Het synthetische eindproduct is een kristalpoeder. Dit poeder kan irritatie veroorzaken aan ogen, luchtwegen en huid.

De Food en Drug Administration (US) heeft diverse manieren van blootstelling onderzocht, maar er is geen informatie bekend wat het doet als het via een injectie direct in het lichaam wordt geïnjecteerd, noch op korte noch op lange termijn.

**Kaliumhydroxide** (E525) (3x hond, 7x kat, -x paard)
Zuurteregelaar en anti-klontermiddel. Kaliumhydroxide is zeer corrosief voor de huid en de ogen. Corrosief is een materie-eigenschap en betekent dat een stof andere stoffen waarmee hij in contact komt kan vernietigen of onherstelbaar beschadigen. In geval van contact met weefsel zoals de huid veroorzaakt een dergelijke stof brandwonden. Ook inademten van een corrosieve stof kan gevaarlijk zijn.

Het woord corrosief is afgeleid van het Latijnse werkwoord *corrodere*, wat *bieten* betekent. Dit benadrukt de manier waarop corrosieve stoffen zich een weg door andere stoffen lijken te bietten, alhoewel deze verklaring niet helemaal juist is. Een lage concentratie van een corrosieve stof heeft vaak irritatie tot gevolg. Corrosieve stoffen zijn anders dan giftige stoffen qua werking. Corrosieve stoffen hebben directe gevolgen indien ze in contact komen met weefsel, terwijl bij giftige stoffen het effect vaak even op zich laat wachten.

Het boekje "Wat zit er in uw eten?" adviseert dit middel te vermijden en vermeldt dat het onder andere gebruikt wordt om bij kalveren de groei van de hoorns te remmen.

**Kaliumfosfaatbuffer** (2x hond, -x kat, 1x paard)
Zie fosfaatbuffer.

**L2 gevriesdroogde stabilisator** (1x hond, 4x kat, 0x paard)
Dextran 40, Caseine hydrolysaat, Lactose, Sorbitol, Natrium hydroxide.

**Lactose** (2x hond, -x kat, 3x paard)
Lactose, ook wel melksuiker genoemd. Lactose zit in heel veel E-nummers (o.a. in gelatine en sorbitol).

**Lactosemonohydraat** (-x hond, 1x kat, -x paard)
Zie lactose.

**Magnesiumchloride hexahydraat** (E511) (-x hond, 3x kat, -x paard)
Magnesiumchloride (MgCl2) is het magnesiumzout van zoutzuur. Het is, op natriumchloride na, de meest voorkomende zoutcomponent in zeewater. Magnesiumchloride wordt gewonnen door het indampen van de overgebleven vloeistof ontstaan bij de productie van kaliumchloride uit carnalliet. Wordt als stabilisator gebruikt.

**MEM (of: Modified Eagle's medium** (1x hond, 6x kat) of **Minimum Essentieel Medium (1x paard)**)
Kweekmedium, bevattend aminozuren, zouten (calciumchloride, kaliumchloride, magnesium sulfaat, natriumchloride en mononatriumfosfaat), glucose en vitamines.

**Metastim (SP Olie)** (-x hond, -x kat, 1x paard)

MetaStim is een adjuvant, bestaande uit:
- Carbopol 941 (4.00 mg)
- Squaleen (3.24 mg)
- Pluronic L – 121
- Polysorbaat 80

Squaleen staat vooral bekend als een uitermate gezonde koolwaterstof die wordt aangetroffen in de leverolie van haaien (squaleen verwijst naar squalidae (Doornhaaien)) maar komt ook in ons lichaam voor omdat het nodig is bij de productie van cholesterol. Op de wikipediapagina wordt squaleen ook beschreven als een bactericide, een middel dat bacteriën doodt. Volgens T.C. Kuiper-v.d. Bos, schrijfster van het boek “De verborgen gevaren van vaccinaties” verandert de combinatie in de adjuvans de kenmerken van het squaleen dermate dat het niet langer meer door het lichaam als lichaamseigen wordt herkend, maar als lichaamsvreemd wordt gezien waardoor er een sterke reactie van het immuunsysteem wordt geactiveerd. Omdat squaleen ook een belangrijke stof is bij de aanmaak van cholesterol kan het gebeuren dat de lichaamsvreemde squaleenvariant ook terechtkomt in het cholesterol.

Carbopol in combinatie met Squaleen vergroot de kans dat de eiwitten in squaleen worden vervormd door ladingsverschuivingen van de atomen, waardoor ze niet meer normaal kunnen functioneren.

Synonieme namen voor Pluronic L 121 zijn onder andere 2-methyloxirane en oxirane copolymer, kortweg ook wel oxirane genoemd. 2-Methyloxirane (een propylene oxid) is in Canada verboden omdat het kankerverwekkend is gebleken bij proefdieren.


**Monokaliumfosfaat (anhydraat)** (5x hond, 7x kat, 2x paard)

Zie kaliumdiwaterstoffosfaat.

**NAO-1 stabilisator** (-x hond, -x kat, 1x paard)

Stabilisator.

**Natriumchloride** (6x hond, 9x kat, 5x paard)

Natriumchloride is een zout met de formule NaCl. Dit zout wordt in de volksmond keukenzout genoemd omdat het bij de bereiding van voedsel vaak gebruikt wordt als smaakmaker en conserveermiddel. Wordt gebruikt voor het oplossen of verdunnen van injecteerbare medicijnen.

**Natriumdiwaterstoffosfaat (dihydraat)** (1x hond, -x kat, -x paard)

Natriumdiwaterstoffosfaat (NaH₂PO₄) wordt gebruikt als een laxeermiddel en in combinatie met andere natriumfosfaten als pH buffer.
**Natriumfosfaatbuffer** (1x hond, -x kat, -x paard)
Zie fosfaatbuffer.

**Natriumlactaat** (E325) (1x hond, -x kat, -x paard)
Melkzuur en lactaten worden gebruikt als conserveermiddel, vooral tegen gisten. Het stabiliseert antioxidanten en wordt aan allerlei producten toegevoegd om uitdroging te voorkomen.
Kan darmstoorzinnen bij baby's en kinderen veroorzaken.

**Natriumtimerfonaat** (-x hond, -x kat, 3x paard)
Timerfonaat is – evenals Thiomersal – een kwik bevattend bewaarmiddel in vaccins en kan ernstige allergische reacties veroorzaken. Nu het wordt vermeld als zijnde Natriumtimerfonaat wil dat o.i. niets anders zeggen dan dat hier nog natrium aan is toegevoegd.

**Neocryl (A640)** (-x hond, 3x kat, -x paard)
Adjuvans (minerale olie). Geregistreerde merknaam voor minerale olie. In de bijsluiters wordt vermeld dat zelfinjectie ernstige pijn en zwelling tot gevolg hebben, vooral in geval van injectie in een gewricht of vinger. Zonder snel medisch ingrijpen kan dit in zeldzame gevallen leiden tot verlies van de betrokken vinger.

**Pancreas caseinehydrolysaat** (1x hond, 1x kat, -x paard)
Kweekmedium.

**Paraffineolie** (lichte paraffineolie) (1x hond, -x kat, 1x paard)
Adjuvans. Paraffine is een product van petroleumdistillatie en wordt verkregen door het raffineren van ruwe petroleum. Het betekent letterlijk zonder activiteit of reactiviteit. Paraffine is met andere woorden een weinig reactieve stof. Paraffineolie die niet volledig geraffineerd is wordt beschouwd als een kankerverwekkende stof.

**Polyoxyethyleen** (1x hond, -x kat, 1x paard)

Probleem is de oorsprong van de vetzuren. Dit is niet te achterhalen in het eindproduct. Zowel dierlijke als plantaardige vetten zijn chemisch 100% identiek. De producent maakt de vetzuren meestal uit het goedkoopste vet. Dit zal in vrijwel alle gevallen plantaardig vet zijn, echter het gebruik van dierlijk vet is niet uitgesloten. En dat kan runder- of varkensvet zijn.

Als consument is het onmogelijk om vast te stellen wat de oorsprong van de vetten is. Overigens kan de producent het vaak ook niet vertellen, en met chemische analyses is het evenmin aan te tonen. Alleen de grondstoffleverancier kan het vertellen, maar deze is voor de consument meestal niet te achterhalen. In geval van allergieën is het wel belangrijk de oorsprong van de vetzuren te weten.

**Polypeptiden** (1x hond, -x kat, -x paard)
Adjuvans om de T-cell respons op te roepen. In de biochemie ammoniakzuurverbinding.
Een polypeptide of polyamide bestaat uit een keten van amiden (peptiden). Kleine eiwitten worden ook wel polypeptiden genoemd.

**Quil A** (-x hond, -x kat, 1x paard)
Zie Quillaja.
**Quillaja (saponaria) (-x hond, 3x kat, 2x paard)**
Zuid-Amerikaanse zeepboom. De bast (quillaia) van deze boom is een van de belangrijkste bronnen van saponinen (zie Saponinen). Volgens het boekje “Wat zit er in uw eten?” wordt Quilaja extract (een natuurlijke schuimverwekker) aangeduid met code “oranje”; sommigen zien dit additief als onschadelijk, terwijl anderen het als giftig zien omdat het stoffen bevat die bloedvergiftiging en darmontsteking kunnen veroorzaken.

**Saponinen (3x hond, -x kat, 1x paard)**
Adjuvans. Verzamelnaam voor een groep van plantardige glycosiden die met water schuim geven als zeepwater. Als stof irriteren saponinen de slijmvlies van ogen en luchtwegen en leiden tot niezen, tranenvorming, oogontsteking en werken prikkelend op het maagdarmkanaal. Verder hebben veel saponinen een antibacteriële en antimycotische (schimmelwerende) werking. Saponinen hebben een oppervlaktespanningsverlagende werking en vormen uitstekende emulgatoren.

**Sorbitol (E420) (10x hond, 8x kat, -x paard)**

Een injectie waar sorbitol in zit, kan het evenwicht verstoren in de enzymen die de glucose-fructose omzetting regelen en kan leiden tot het ontstaan van diabetes. Het kan tevens leiden tot een fout in de energievoorziening van de cellen, cellerdood en DNA fragmentatie. In de VS is een waarschuwing afgegeven voor sorbitol: “not to be injected”.

Sorbitol wordt in vaccins gebruikt als stabilisator t.b.v. de houdbaarheid van het product.

**Sucrose (5x hond, 10x kat, -x paard)**
Sacharose ($C_{12}H_{22}O_{11}$) of tafelsuiker, ook wel sucrose (in het Engels) genoemd, is een disacharide, bestaande uit een glucose-eenheid en een fructose-eenheid (vruchtensuiker). Behalve als zoetstof wordt sacharose ook gebruikt bij de productie van polyolen.

Sucrose wordt in vaccins gebruikt als stabilisator t.b.v. de houdbaarheid van het product.

**Thiomersal (1x hond, -x kat, 5x paard)**
Hulpstof (conserveringsmiddel) en adjuvans. Neurotoxine. Deze kwikverbinding is bedoeld om schimmels en bacteriën uit te schakelen en is neurotoxisch. Allergische klachten komen frequent voor. Het RIVM zegt dat de toevoeging van Thiomersal geen probleem is en dat het een halfwaardetijd heeft van 7 dagen, oftewel: dat na 7 dagen de helft van deze stof uit het bloed verdwenen is. Volgens prof. Janna Koppe, emeritus hoogleraar neonatologie van de Universiteit van Amsterdam, is deze informatie niet volledig: wat het RIVM niet zegt, is dat de halfwaardetijd voor de hersenen meer dan drie keer zo lang is. Het duurt namelijk 24 dagen voor de helft van deze stof uit de hersenen verdwenen is.

Dr. Hugh Fudenberg, immunogeneticus, stelt in zijn onderzoek tussen 1970 en 1980 dat als een persoon vijf achtereenvolgende griepprikken heeft gekregen in deze periode van onderzoek, de kans op het verkrijgen van Alzheimer met een factor TIEN is toegenomen, vergeleken met het krijgen van tweemaal of helemaal geen griepprik.
Dokter Fudenberg verklaart dat dit komt door de aanwezigheid van kwik en aluminium in de griepprik. Het geleidelijk toenemen van de hoeveelheid kwik en aluminium in de hersenen veroorzaakt cognitieve dysfunctie.

In een griepprik zat tot een aantal jaren terug ongeveer 25 microgram kwik, 1 microgram staat te boek als giftig.

**Triëthanolamine (TEA) (1x hond, -x kat, 1x paard)**
Oplosmiddel. Op zichzelf niet schadelijk maar kan in combinatie met andere stoffen nitrosamines vormen die maag-, lever- of andere vormen van kanker kunnen veroorzaken. Ook DEA (diethanolamine), dat eventueel als onzuiverheid en afbraakproduct in TEA kan voorkomen, is kankerverwekkend.
### Adjuvantia en hulpstoffentabel hondenvaccins

#### Tabel 1 hondenvaccins

<table>
<thead>
<tr>
<th></th>
<th>Intervet</th>
<th>Merial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nobivac DHP</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Nobivac DHPi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nobivac KC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nobivac L + DHPPi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nobivac Lepto</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nobivac L4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nobivac L + P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nobivac Parvo-C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nobivac PL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nobivac Pro</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nobivac Puppy DP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nobivac Rabies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nobivac RL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quantum Dog DG2P/CLV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quantum Dog Lepto</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eurican DHP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eurican DHPi-L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eurican Herpes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eurican L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eurican P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eurican P-L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eurican Pneumo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eurican Primo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rabisin</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | |
|                       |          |        |
| Aluminumfosfaat       |          |        |
| Antifoam SAG471       |          |        |
| Calciumchloride       | *        |        |
| Caseine pepton        |          |        |
| Caseinehydrolysaat    | *        |        |
| Collageen hydrolysaat |          |        |
| D-MEM                 |          |        |
| Dextran               |          |        |
| Dikaliumfosfaat       |          |        |
| Dinatriumfosfaat (dihydraat) |        |        |
| Dinatriumwaterstoffosfaat-dihydraat (E339) |        |        |
| Ether v.v.etalcoholen en polyolen |        |        |
| Formaldehyde          |          |        |
| Fosfaatbuffer         |          |        |
| Gehydrolyseerde gelatine | *    |        |
| Gelatine (E441)       |          |        |
| Gelatine-gebaseerde stabilisator |        |        |
| Gemod. Hartmann-oplossing |        |        |
| Gluciden in PBS       |          |        |
| GMEM Medium           |          |        |
| Kallium dihydrogeen fosfaat | *   |        |
| Kallium- en natriumfosfaatbuffer | * |        |
| Kalliumchloride       | *        |        |
| Kalliumdiwaterstoffosfaat |        |        |
| Kalliumhydroxide      |          |        |
| L2 gevriesdroogde stabilisator |        |        |
| Lactose               |          |        |
| Modified Eagle’s medium |        |        |
| Monokalium fosfaat    |          |        |</p>
<table>
<thead>
<tr>
<th>Tabel 1 hondenvaccins</th>
<th>Intervet</th>
<th>Merial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nobivac DHP</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Nobivac DHPPi</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Nobivac XC</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Nobivac L + DHPPi</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Nobivac Lepto</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Nobivac L + P</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Nobivac Para-C</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Nobivac Pl</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Nobivac Pro</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Nobivac Puppy DP</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Nobivac Rabies</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Nobivac RL</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Quantum Dog DA2PPi/CLV</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Quantum Dog Lepto</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Eurican DHP</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Eurican DHPPi</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Eurican Herpes</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Eurican L</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Eurican P</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Eurican P-L</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Eurican Pneumo</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Rabisin</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

Natriumchloride
Natriumdiwaterstoffosfaat dihydraat
Natriumfosfaatbuffer
Natriumlactaat
Pancreas caseinehydrolysaat
Paraffine olie, lichte
Polyoxyethyleen vetzuren
Polypeptiden
Saponine
Sorbitol (E420)
Sucrose
Thiomersal
Triethanolamine
Trypton
Water voor injectie
Zouten
<table>
<thead>
<tr>
<th>Tabel 2 hondenvaccins</th>
<th>Pfizer</th>
<th>Virbac</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vanguard 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vanguard CPV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vanguard CPV-Lepto</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vanguard Lepto</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vanguard PUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vanguard R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canigen DHA2PPi-L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canigen L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canigen P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canigen Puppy 2b</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Aluminiumfosfaat      |        | Kaliumchloride |
| Aluminiumhydroxide    |        | Kaliumdiwaterstoffosfaat |
| Antifoam SAG471       |        | Kaliumhydroxide |
| Calciumchloride       |        | L2 stabilisator |
| Caseïne pepton        |        | Lactose |
| Caseïnehydrolysaat    |        | Modified Eagle’s medium |
| Collageen hydrolysaat |        | Monokalium fosfaat |
| D-MEM                 |        | Natriumchloride |
| Dextran               |        | Natriumdiwaterstoffosfaat dihydraat |
| Dikaliumfosfaat       |        | Natriumfosfaatbuffer |
| Dinatriumfosfaat (dihydraat) | * | Natriumlactaat |
| Dinatriumwaterstoffosfaat-dihydraat (E339) | * | Pancreas caseïnehydrolysaat |
| Ether v.vetelcoholen en polyolen | | Paraffine olie, lichte |
| Formaldehyde          |        | Polyoxyethylen vetzuren |
| Fosfaatbuffer         |        | Polypeptiden |
| Gehydrolyseerde gelatine |   | Saponine |
| Gelatine (E441)       |        | Sorbitol (E420) |
| Gelatine-gebaseerde stabilisator | | Sucrose |
| Gemod. Hartmann-oplossing | | Thiomersal |
| Gluciden in PBS       |        | Triethanolamine |
| GMEM Medium           |        | Trypton |
| Kalium dihydrogeen fosfaat | | Water voor injectie |
| Kalium- en natriumfosfaatbuffer | | Zouten |
## Adjuvantia en hulpstoffentabel kattenvaccins

<table>
<thead>
<tr>
<th>Elanco</th>
<th>Intervet</th>
<th>Merial</th>
<th>Pfizer</th>
<th>Virbac</th>
</tr>
</thead>
<tbody>
<tr>
<td>Felocell CVR</td>
<td>Felocell CVR-C</td>
<td>Felocell RC</td>
<td>Nobivac Bb v. katten</td>
<td>Nobivac Forcat</td>
</tr>
<tr>
<td>Nobivac Tricat</td>
<td>Nobivac Tricat trio</td>
<td>Purevax FeLV</td>
<td>Purevax RCP</td>
<td>Purevax RCPCh FeLV</td>
</tr>
<tr>
<td>Purevax RCP</td>
<td>Purevax RCPCh</td>
<td>PureVax RCP FeLV</td>
<td>PureVax Bb v. katten</td>
<td>Nobivac Forcat trio</td>
</tr>
<tr>
<td>Nobivac Tricat trio</td>
<td>Purevax RCPCh</td>
<td>Nobivac Tricat trio</td>
<td>Nobivac Tricat trio</td>
<td>Nobivac Tricat trio</td>
</tr>
<tr>
<td>Nobivac Forcat</td>
<td>Nobivac Forcat trio</td>
<td>Nobivac Forcat</td>
<td>Nobivac Forcat trio</td>
<td>Nobivac Forcat trio</td>
</tr>
<tr>
<td>Nobivac Tricat trio</td>
</tr>
<tr>
<td>Nobivac Forcat trio</td>
</tr>
</tbody>
</table>

### Ingredients

- Aluminiumhydroxide: * *
- Calciumchloride dihydraat: *
- Carbopol: *
- Caseïne hydrolysaat: *, *
- Collageen hydrolysaat: *, *, *
- Dextran 40: *
- Dikaliumfosfaat: *
- Dinatriumfosfaat dihydraat of watervrij: *
- Dinatriumwaterstoforthofosfaat: *
- Eagles Earles: *
- Emulsigen SA: *
- Ethyleen maleinezuur anhydride (EMA31): *
- Formaldehyde: *
- Fosfaatbuffer: *
- Gelatine: *
- Gentamicine: *
- Glutaminezuur: *
- Kaliumchloride: *
- Kaliumdiwaterstoffosfaat: *
- Kaliumhydroxide: *
- L2 Stabilisator: *
- Lactose: *
- Lactosemonohydraat: *
- Magnesiumchloride hexahydraat: *
- Modified Eagle’s medium (MEM): *
- Monokaliumfosfaat: *
- Monokaliumfosfaat anhydraat: *
- Natriumchloride: *
- Natriumhydroxide: *
- Neocryl: *
- Pancreas caseïnehydrolysaat: *
<table>
<thead>
<tr>
<th></th>
<th>Elanco</th>
<th>Intervet</th>
<th>Merial</th>
<th>Pfizer</th>
<th>Virbac</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quillaja saponaria</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sorbitol</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sucrose</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>Water voor injectie</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td>*</td>
</tr>
</tbody>
</table>

* = Component present in the product.
<table>
<thead>
<tr>
<th>Adjuvantia en hulpstoffentabel paardenvaccins</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Intervet</strong></td>
</tr>
<tr>
<td>Equilis Equenza T</td>
</tr>
<tr>
<td>Equilis StepE</td>
</tr>
<tr>
<td>Equilis StrepE</td>
</tr>
<tr>
<td>Prevacun NT</td>
</tr>
<tr>
<td>Tetauns serum</td>
</tr>
<tr>
<td>Protecin-TE</td>
</tr>
<tr>
<td>Protecin West Nile</td>
</tr>
<tr>
<td>Duvaxyn IE plus T</td>
</tr>
<tr>
<td>Equip FT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hulpstoffen</th>
<th>Intervet</th>
<th>Merial</th>
<th>Pfizer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminiumfosfaat</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Aluminium hydroxide</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Ammonium acetaat</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Carbomeer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloridebuffer</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Cholesterol</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Dinatriumdifosfaat</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dinatriumfosfaat</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Dinatriumfosfaatdihydraat</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Dinatriumhydrofosfaat | | | *
| Dinatriumwaterstoforthofosfaat | | | *
| Ether van vetalkoholen / polyolen | | | *
| Formaldehyde | * | * | *
| Fosfaatbuffer | * | * | * |
| Fosfatidlycholine | * | * | * |
| Gezuiverd saponine | | | *
| Immunostim | * | | |
| Kaliumchloride | | | *
| Kaliumhydrofosfaat | | | *
| Kaliumhydrogeenfosfaat | | | *
| Kaliumfosfaat | | | *
| Lactose | * | * | * |
| Lichte paraffineolie | | | *
| MEM (Min Essentieel Medium) | | | *
| MetaStim™ (SP Olie) | | | *
| Monokaliumfosfaat anhydraat | | | *
| NAO-1 stabilisator | | | *
| Natrumchloride | | * | *
| Natrumtimerfonaat | * | * | *
| PBS | * | * | *
<p>| Polyoxyethyleen vetzuren | | | * |</p>
<table>
<thead>
<tr>
<th></th>
<th>Equilis Equenza T</th>
<th>Equilis Prequenza</th>
<th>Equilis Resequin</th>
<th>Equilis StrepE</th>
<th>Equilis TE</th>
<th>Equilis Tetanus</th>
<th>Prevacun NT</th>
<th>Resequin Plus</th>
<th>Tetauns serum</th>
<th>Pneumequine</th>
<th>ProteqFlu</th>
<th>ProteqFlu-TE</th>
<th>Proteq West Nile</th>
<th>Duvaxyn BHV 1,4</th>
<th>Duvaxyn IE plus T</th>
<th>Duvaxyn WNV</th>
<th>Equip FT</th>
<th>Vanguard R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quill A</td>
<td>275-580 μg</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>Saponine</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>Saponine (gezuiverd Quillaia)</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>Sporen van formaldehyde</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>Sporen van thiomersal</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>Thiomersal</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>Triethanolamine</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>Water voor injectie</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
</tbody>
</table>
HOMEOPathie en Vaccinatie

Samuel Hahnemann (1751-1843), ontdekker en grondlegger van de homeopathie, voert gedurende 1781 tot 1784 zijn eigen huisartsenpraktijk in Duitsland, maar deze geeft hij op uit onvrede over de resultaten van de toegepaste behandelingen en hij besluit de kost te gaan verdienen met vertalen. Hij stuit zo op het werk van de Schotse professor William Cullen: "A Treatise on the Materia Medica", welk werk Hahnemann vertaalt. Cullen claimt dat de Kininebomen in Peru een effectief middel blijken te zijn tegen malaria, vanwege de samentrekkende werking van de boomschors, de kininebast. Hahnemann vindt deze verklaring onbevredigend en gaat zelf op zoek naar een betere verklaring. Hij besluit de werking van de kininebast op zichzelf uit te testen door de stof in te nemen. Hij doet hierbij een opmerkelijke ontdekking: nadat hij een middel tegen malaria heeft ingenomen zonder malaria te hebben, krijgt hij gedurende enkele uren malarisymptomen. Hiermee komt Hahnemann uiteindelijk tot het formuleren van zijn grondthese, namelijk: "Datgene wat een set van symptomen kan produceren in een gezond individu, kan een ziek persoon die de dezelfde symptomen heeft, genezen."

Deze grondthese wordt later bekend als "similia similibus curentur" oftewel, 'het gelijkende geneest het gelijke'. Hahnemann noemt deze geneeswijze homeopathie (Oud Grieks: homoios=gelijksoortig, pathos=lijden of ziekte).

Hahnemann heeft zijn inzichten over de homeopathie op onnavigbare wijze vastgelegd in zijn "Organon der geneeskunde" waar hij in de jaren 1810 tot 1843 aan geschreven heeft. Volgens het woordenboek betekent "organon" een instrument waarvan men zich bedient. Hoewel de Organon een boek is gericht op mensen, gaan de hierin omschreven natuurwetten uiteraard ook op voor dieren en is het tegenwoordig nog steeds de leidraad bij de behandeling van onze patiënten.

Similia similibus curentur, wordt door Hahnemann als volgt omschreven in de Organon in § 26:
In het levende organisme wordt een zwakkere dynamische aandoening blijvend uitgedoofd door een sterkere, wanneer deze, hoewel verschillend van aard, in haar manifestatie er zeer op lijkt.

In de volgende hoofdstukken willen we uitleggen hoe wij als homeopaat aankijken tegen gezondheid, ziekte en genezing en vervolgens hoe vaccinatie in dit plaatje past. De geciteerde teksten uit de Organon zijn afkomstig uit de 6e editie die Hahnemann een paar maanden voor zijn dood (hij was toen 88 jaar oud!) voltooide maar pas voor het eerst werd gepubliceerd in 1921, bijna 80 jaar later. Daarnaast maken wij om onze uitleg (voor iedereen) inzichtelijk te maken gebruik van diverse modellen.

Ziekte

In § 9 en 10 van de Organon zegt Hahnemann:

§9 Als de mens gezond is, heerst de spirituele levenskracht (autocratie), die als Dynamis het stoffelijk lichaam (het organisme) leven doet, onbeperkt. Ze houdt al zijn delen in een bewonderenswaardig harmonische, levende werking, die zich uit in voelen en handelen, zó, dat de met verstand toegeruste psyche zich vrij van dit levende, gezonde instrument kan bedienen voor de hogere bedoelingen van ons bestaan.

§10 Als men de levenskracht wegdenkt, is ons stoffelijk organisme niet in staat te voelen, te handelen, zich in stand te houden. Alleen dat onstoffelijke (die levenskracht, dat levensbeginsel), dat in gezondheid en ziekte het organisme aan de gang houdt, maakt dat de mens beleefd en functioneert.
Hahnemann stelt hier dus dat de Dynamis het centrale begrip is bij gezondheid en ziekte. Deze levenskracht stuurt processen aan die in het lichaam plaatsvinden. Het laat mens en dier als stoffelijk geheel (lichaam) zodanig goed functioneren dat de weg vrij is voor de hogere bedoelingen van het bestaan. Wat voor dieren inhoudt dat ze datgene kunnen doen waarvoor ze op de wereld zijn gekomen, waarvoor ze zijn gemaakt; dat ze als dier maximaal zichzelf kunnen zijn.

In § 11 zegt Hahnemann:

Als de mens ziek wordt, is in het begin alleen deze zelf werkzame levenskracht (het levensbeginsel), die overal in zijn organisme aanwezig is, 'ontstemd' door de tegen het leven gerichte dynamische invloed van een ziekmakend agens. Alleen een levensbeginsel, dat tot zo’n wanklank verworden is, kan het organisme die nare gewaarwordingen bezorgen en het zo abnormaal laten functioneren, dat we het ziek noemen. Want deze kracht, die op zichzelf onzichtbaar is en alleen te merken door haar inwerkingen op het organisme, geeft slechts kennis van haar ziekelijk ontstemd zijn, doordat het organisme in voelen en handelen ziek blijkt (dat is de enige kant, die voor de zintuiglijke waarneming van de geneeskundige open ligt). Dat wil zeggen: het ziekzijn maakt zich kenbaar door ziektesymptomen en door niets anders.

Hahnemann zegt in deze paragraaf dat ziekte in feite primair een verstoring van de Dynamis is en dat de Dynamis deze verstoring laat zien door middel van het produceren van ziektesymptomen.

De vitaliteit van de Dynamis bepaalt of een mens of dier op een bepaald moment ziek wordt. In de volksmond wordt dit gegeven “weerstand” genoemd, echter, weerstand is een gevolg van de vitaliteit van de Dynamis.

Wanneer de Dynamis 100% functioneert, is er op elke agens (prikkel) een respons die in kracht gelijk is aan de kracht van die van de prikkel (100% actie = 100% reactie) en zal een mens of dier niet ziek worden.

De Dynamis wordt in bovenstaande tekening voorgesteld als een wijzer die uitslaat bij elke prikkel. De Dynamis krijgt een impuls, er komt bijv. een griepvirus voorbij, en de wijzer slaat uit. Als er een 100% reactie komt van de Dynamis, dan gaat de wijzer weer terug naar het nulpunt en is een balans bereikt tussen ziekte en gezondheid, ook wel homeostase genoemd. Het griepvirus is geëlimineerd en zonder dat je het merkt, heeft de Dynamis een griepvirus uit je systeem verwijderd.

Maar heeft de Dynamis bijvoorbeeld maar 95% reactiekracht, dan is dat precies genoeg om te zeggen “ik heb het koud, ik heb zware armen en benen, ik wil onder de wol”; dit gebrek aan 100% reactiekkracht (herstelmogelijkheid) van de Dynamis wordt in de homeopathie psora genoemd.

Hoe meer psora er is (dus hoe minder de Dynamis in staat is reactiekkracht te tonen), hoe moeilijker het wordt om een ziekteproces te doen omkeren (de wijzer weer terug naar het nulpunt te brengen).

Psora is de grondoorzaak van alle ziektes en elk levend wezen is hiermee belast.
Genezing

De reactiekracht van de Dynamis is niet altijd hetzelfde; dit fluctueert en ook ouderdom doet de reactiekracht van de Dynamis afnemen. Dit verklaart ook waarom er bij ieder levend wezen sprake is van enige mate van psora.

In feite betekent dit ook dat je nooit kunt spreken van totale genezing omdat psora zal toenemen naarmate een levend wezen ouder wordt. Hahnemann spreekt daarom liever over “psorische stilte”; de psorische gesteldheid drukt zich dan zo min mogelijk uit.

We weten nu hoe ziekte ontstaat, maar hoe kunnen we genezing bewerkstelligen?

Hahnemann zegt daar uiteraard heel veel over in de Organon. Wij citeren een aantal belangrijke paragrafen.

§ 17 In de genezing, die volgt op het wegnemen van de totaliteit van de waarneembare verschijnselen en bijzonderheden van de ziekte, wordt tegelijk de daaraan ten grondslag liggende inwendige verandering van de levenskracht opgeheven, dus de ziekte in haar geheel. Daaruit volgt, dat de arts alleen maar het gehele symptomencomplex hoeft weg te nemen om tegelijk daarmee die inwendige verandering, d.w.z. die disharmonie van het levensbeginsel, dus de ziekte in haar geheel, de ziekte zelf op te heffen en te vernietigen.

Hahnemann geeft in deze paragraaf aan dat ziekte niet meer is dan een uiting van de Dynamis (disharmonie van de levenskracht) en dat genezing alleen mogelijk is als er op de totaliteit van de ziektesymptomen wordt voorgeschreven.

§ 18 Buiten de totaliteit van de symptomen – dat is een waarheid die niet te betwijfelen valt – rekening houdende met bijkomende omstandigheden, is er aan ziekten niets te ontdekken waardoor ze therapeutische aanwijzingen zouden kunnen verschaffen. Het valt dus niet te ontkennen dat de totaliteit van alle symptomen en omstandigheden, waargenomen bij ieder apart ziektegeval, de enige indicatie moet zijn, die zou kunnen leiden naar een geneesmiddelkeus.

Ook hier zegt Hahnemann iets belangrijks: ieder ziektegeval is uniek in zijn symptomenbeeld. Dit en de bijkomende omstandigheden moet ons homeopaten leiden naar de juiste geneesmiddelkeus. In de tegenwoordige geneeskunde is het gewoon geworden om een naam aan een ziekte te hangen, zonder te kijken welke individuele symptomen die patiënt nu werkelijk laat zien en zonder de patiënt als één geheel te beschouwen.

§ 19 Omdat ziekten dus alleen maar veranderingen in het welbevinden van de gezonde mens zijn, die zich door ziekteverschijnselen manifesteren, en genezing ook alleen maar mogelijk is doordat die ziektebestand weer in gezondheid wordt omgezet, kan men gemakkelijk inzien, dat de geneesmiddelen op geen enkele manier ziekten zouden kunnen genezen, als ze niet het vermogen hadden de menselijke gesteldheid in haar gevoelens en functies te veranderen. Het is zelfs alleen dit vermogen, de conditie van de mens om te zetten, waarop hun geneeskrachten berusten.

Hahnemann zegt hier in feite, evenals in § 11, dat ziekte in oorsprong onstoffelijk dynamisch is. Op basis van het gelijksoortigheidsprincipe betekent dit dat er daarom ook behandeld moet worden met onstoffelijke gedynamiseerde middelen die gelijksoortig zijn aan de onstoffelijke dynamische verstoring. Dan heffen ze elkaar op.

Een homeopathisch geneesmiddel (door Hahnemann vaak aangeduid als kunstmatige ziekte) kan de natuurlijke ziekte genezen doordat de geneesmiddelsymptomen die de homeopathisch middelen bij de gezonde mens oproepen sterker in kracht zijn dan die van de natuurlijke ziekte. De geneesmiddelsymptomen moeten wel een zo groot mogelijke gelijkenis hebben met de totale ziektesymptomen (Organon § 29):
Daardoor dooft het gevoel van de natuurlijke (maar zwakkere) dynamische ziekteëandoening uit en verdwijnt. Het bestaat van nu af voor het levensbeginsel niet meer. Dat wordt nu alleen nog maar door de sterkere, kunstmatige ziekte in beslag genomen en beheerst. Deze laatste (de kunstmatige ziekte) is echter gauw uitgewerkt en dan is de patiënt vrij en genezen.

Dat natuurlijke ziekteagentia zwakker zijn dan de geneesmiddelziektes, verklaart Hahnemann met het gegeven dat niet iedereen ziek wordt van een griepvirus dat rondwaart. Dat duidt er op dat het virus niet in staat is om iedereen die ermee in contact komt ziek te maken. Terwijl ieder geneesmiddel altijd en onder alle omstandigheden werkt en ieder levend orga nisme door deze geneesmiddelziekte wordt aangetast.

Dit bewijst Hahnemann door vele geneesmiddelproeven waarbij hij medicamenten in een enkelvoudige, onbewerkte vorm toedient aan proefpersonen. Deze geneesmiddelproeven worden heden ten dage nog steeds uitgevoerd door diverse homeopaten.

Ter verduidelijking van het bovenstaande een voorbeeld met Arsenicum. Dit is een gif dat bij (onverdunde) inname symptomen kan veroorzaken die lijken op de symptomen van voedselvergiftiging. Daarom kan het als homeopathisch middel ingezet worden bij klachten veroorzaakt door voedselvergiftiging.

Of genezing mogelijk is, is niet alleen afhankelijk van de reactiekracht van de Dynamis; ook de gevoeligheid van de patiënt zelf, zijn erfelijke informatie en leeftijd maar ook de aanleiding van de klacht - denk aan bijvoorbeeld de (leef)omstandigheden van het dier - spelen een rol.

Om al deze invloeden inzichtelijk te maken, maken wij gebruik van het onderstaande panmodel.

De hogedrukpan stelt een levend wezen voor; hierin bevinden zich de constitutie en de erfelijke informatie van een dier; zo is het dier op de wereld gekomen. De druk in de pan kan oplopen als het vuurtje er onder opgestookt wordt. Brandstof hiervoor zijn bijvoorbeeld incidenten, (leef-)omstandigheden, biografie en tijd.

De druk in de pan zal oplopen en afhankelijk van wat er zich voor informatie in de pan bevindt en hoeveel, zullen er klachten zichtbaar worden.

Acute klachten zullen zich duidelijker manifesteren dan chronische klachten. Er kunnen zich echter ook incidenten voordoen die leiden tot acute klachten maar waar de constitutie bij het ontstaan van de klacht niet betrokken is; denk hierbij bijvoorbeeld aan een snijwond van een mes. Bij het herstel van deze snijwond is de constitutie (pan) uiteraard wel betrokken.
Ziekteclassificatie

In de 6e editie van de Organon maakt Hahnemann onderscheid tussen de verschillende ziektevormen, dit wordt door hem indeling der ziekten genoemd (§ 72). Hij maakt hier een verdeling in acute ziektes en chronische ziektes.

De acute ziektes verdeelt hij weer in individuele ziektegevallen en collectieve ziektes (besmettelijke epidemische ziektes), ook wel tussenziektes genoemd.

Bij de chronische ziektes maakt hij onderscheid in de ontstaansgeschiedenis (onderdrukking door middel van iatrogene behandelingen of schadelijke invloeden (verkeerde voeding, (leeftijd)omstandigheden)) die te vermijden zijn en de chronische ziektes die door chronische miasma’s zijn ontstaan.

Deze laatste zijn wat Hahnemann betreft de echte chronische ziektes want:

§ 78   Aan zichzelf overgelaten zonder gebruik van specifieke geneesmiddelen ertegen, worden ze steeds erger. Zelfs onder de beste psychische en lichamelijke leefregels nemen ze toch toe en teisteren de mens met steeds erger lijden tot aan het eind van zijn leven.

Aan de hand van Hahnemann’s indeling der ziektes ontwikkelde Ewald Stöteler een ziekteclassificatiemodel in de vorm van een bloem waarbij elk bloemblad voor een bepaalde categorie staat. Dit model zorgt ervoor dat wij als behandelend homeopaat inzicht krijgen in de ontstaansgeschiedenis van de klacht(en) en dat elk facet dat een rol heeft gespeeld in de totstandkoming hiervan een plaats krijgt in de behandeling.

Het ziekteclassificatiemodel bevat naast (de uitingen van) de verschillende ziektevormen ook de individuele kenmerken van de patiënt.

We zullen per onderdeel een korte en daar waar wij het nodig achten een wat uitgebreidere uitleg geven.
Psora/constitutie

Dit is wie wij zijn, hoe we op de wereld zijn gezet en het bevat onze mogelijkheden en onmogelijkheden, onze kwaliteiten en valkuilen. Het bevindt zich in het hart van de bloem want dit is de spil waarom alles draait, de constitutie bepaalt namelijk hoe een klacht zich zal uiten. Zoals al gezegd, psora is de grondoorzaak van alle ziektes en elk mens en dier is psorisch belast; psora is verweven met onze constitutie. Psora kan er voor zorgen dat een dier (of mens) niet meer in staat is tot reactie, dit noemen we psorische indifferentie (zie ook de uitleg onder het kopje miasma’s).

Miasma’s (psora, sycosis en syphilis)

Miasma wil zeggen: besmetting. In de humane voorgeschiedenis waren de ziektes gonorrée en syphilis (naast psora) de enige besmettelijke ziektes die zich hechtten aan de Dynamis; zonder gebruik van homeopathische geneesmiddelen werden ze steeds erger en waren niet te overwinnen door het eigen organisme. Deze twee ziektes hebben gedurende een paar honderd generaties vele miljoenen mensen besmet en konden daardoor tot grote ontwikkeling komen, wat maakt dat ze in veel van de huidige zielebeelden op de een of andere manier nog steeds tot uiting kunnen komen, zonder dat de patiënt daadwerkelijk aan gonorrée of syphilis hoeft te lijden. Een (verre) voorouder die aan deze ziekte heeft geleden kan al genoeg zijn. Hoewel dieren nooit besmet zijn geweest met gonorrée en syfilis, zijn deze bijbehorende reacties wel herkenbaar bij dieren.

Miasma’s zijn tendensen die te maken hebben met de dynamiek van de klachten (vooral in de acute sfeer). We gaan ter illustratie uit van de 4 mogelijke reacties:

a) Gezond : 100%; de reactie van de Dynamis is even sterk als de prikkel;

b) Tekort : < 100%; de Dynamis reageert te weinig op de prikkel (psora);

c) Overdaad : > 100%; de Dynamis reageert met overdaad op een prikkel (sycose);

d) Destructief : >> 100%; de Dynamis reageert plotseling en destructief op een prikkel (syphilis).

Als voorbeeld nemen we weer een snijwond van een mes:

ad a) De snijwond is door een incident ontstaan (exogeen) en geneest vanzelf: 100% reactie.

ad b) Als er een tekort aan reactie is, dan geneest de snijwond niet, de wond gaat niet dicht, er kunnen wat rode randjes langs de wond ontstaan, er kan een beetje pus of wondvocht uit blijven komen, maar genezing vindt er niet plaats. In feite reageert de patiënt niet meer. Dit gebrek aan reactiekracht noemen we psorische indifferentie.

ad c) Is er sprake van een sycotische reactie, dan kan de wond heel erg gaan ontsteken, veel pus laten zien, met veel roodheid en veel warmte met eventueel zwelling.

ad d) Is er sprake van een syfilitische reactie, dan kun je een snelle necrotisering van de huid zien om de snee, met weinig tot geen pus. Alsof het vlees wordt weggevreten. Het gaat hier om een heel snelle en destructieve reactie.

Blijft het bij een eenmalige reactie bij een dier, dan spreken we van een sycotische of syfilitische reactie. Zien we dit beeld geregeld terugkomen in de patiënt, of zien we het terug in het ras, dan spreken we van een sycotische of syfilitische tendens of miasma.

Als voorbeeld van een sycotische reactie in het kader van deze scriptie noemen we Droes bij paarden. Deze ziekte gaat gepaard met veel pus en openbaart zich snel en heftig.

Een voorbeeld van een syfilitische reactie is een auto-immuun reactie na een vaccinatie, bijvoorbeeld auto-immuun gemedieerde poliartritis (een tegen het leven gekeerde reactie). Syfilitische reacties kenmerken zich ook door het plotselinge karakter, bijvoorbeeld een dier dat nooit ziek is geweest (beter gezegd; nooit ziektesymptomen heeft laten zien) en ineens een darmbloeding krijgt en ondanks medisch ingrijpen binnen 2 uur overlijdt.

Maar ook een open gehemelte valt onder het syfilitisch miasma; het is tegen het leven gericht, een dier met een open gehemelte kan niet overleven zonder hulp.

Sycotische en/of syfilitische beelden zitten in de patiënt zelf, het is dus iets wat de patiënt zelf al bij
zich draagt als hij geboren wordt. Incidenten (bijvoorbeeld verhuizingen, strenge opvoeding, asielplaatsing, enz.), maar ook iatrogene belasting, tijd en erfelijke belasting kunnen ervoor zorgen dat de druk in de pan toeneemt (sterker wordende psora). Hoe meer psora, hoe minder reactiekracht van de Dynamis en hoe meer ruimte het sycotische of syfilitische beeld kan innemen.

Een dier kan ook onder sycotische of syfilitische omstandigheden leven. In dat geval gaat de mens sycotisch met het dier om en toont geen respect voor het dier en zijn omstandigheden. Bijvoorbeeld pups die met 4 weken bij de moeder worden weggehaald om verhandeld te worden. Dan wordt het sycotische als het ware van buitenaf aangebracht en dat kan zich bij dieren uiten in sycotische klachten.

Of denk aan duizenden varkens opeen gepropt in een varkensflat met daardoor grote kans op pandemieën of kannibalisme, dat is syfilitisch.

Acuut-miasmatisch
In dit bloemblad worden de ziektesymptomen genoteerd. Het ziek zijn kan zich op verschillende manieren openbaren. Maar in alle gevallen is er sprake van een ontstemde Dynamis; deze zal zich via de constitutie uiten door klachten te laten zien. Dit noemen wij acuut-miasmatische klachten (vanwege het psorisch miasma). Deze acuut-miasmatische klachten zijn weer onder te verdelen in 112-situaties, acuut, sub-acute en chronisch constitutioneel (AMC).

Bij voorschrift op het acuut-miasmatische bloemblad behandel je op het ziektebeeld. Daarnaast kan voorschrift nodig zijn op de andere aanwezige bloembladen of constitutie wanneer zij een rol spelen in de ontstaansgeschiedenis van de klacht.

Bij 112-situaties is sprake van veel ziektedynamiek; de patiënt laat veel acute symptomen zien. Vaak betekent veel dynamiek dat de Dynamis goed in staat om te kunnen reageren. Hoe heftiger de koorts, hoe meer reactiekracht de Dynamis bezit. Voorbeelden van 112-situaties zijn bijvoorbeeld heftige diarree en braken met kans op uitdroging bij bijvoorbeeld parvo of een anafylactische shock na vaccinatie.

Voorbeelden van een patiënt die acuut is, zonder dat er sprake is van een 112-situatie: griepverschijnselen, (kennel)hoest bij honden, lethargie en verhoging na vaccinatie, hypersensitiviteit na vaccinatie.

Bij subacute uitingen is er vaak sprake van een opleving van een oude klacht, dit gaat meestal niet met heel veel ziektedynamiek gepaard.

Een klacht is natuurlijk geen statisch gegeven; er kunnen in het ziekteverloop veranderingen plaatsvinden in de ziektedynamiek. Bijvoorbeeld een kat die een blaasontsteking ontwikkelt nadat er een huisgenoot is bijgekomen. Die blaasontsteking kan ontzettend pijnlijk zijn, het dier wil daarom eigenlijk niet plassen en als hij dat toch doet gunt hij het uit (112 situatie), maar een dag later gaat het al weer iets beter en zie je ‘alleen nog maar’ dat het dier veelvuldig op de bak gaat zitten maar er slechts een paar kleine druppeltjes uitperst (acuut).

Erfelijke tendensen
De erfelijke belasting (ook wel erfelijke informatie genoemd) zegt iets over de manier waarop de acuut-miasmatische klachten zich (zullen gaan) uitdrukken; het is een tendens binnen die diersoort/rasgroep of in dat individuele dier.

Erfelijke tendensen ontstaan doordat ziektes in het voorgeslacht nooit goed zijn doorgevoerd/uitgezien. Pas wanneer een ziekte goed is doorgemaakt, wordt deze opgeruimd en vormt daardoor geen belasting voor het systeem (pan). Het komt echter zelden voor dat ziektes echt helemaal worden doorgemaakt; ze worden in de meeste gevallen onderdrukt met (reguliere) medicatie (dit was overigens in de tijd van Hahnemann ook al het geval). Het lijkt dan alsof de patiënt genezen is, want er zijn geen symptomen meer waarneembaar, maar de informatie van die
betreffende ziekte blijft in de patiënt aanwezig en wordt doorgegeven aan het nageslacht, dat ter wereld komt met een neiging (tendens) tot het ontwikkelen van een bepaald soort klachten. Bij katten komt deze tendens bijvoorbeeld tot uiting in de vorm van chronische niesziekte in bepaalde rassen (Siamezen).

Aangezien er van generatie op generatie is gevaccineerd of behandeld met antibiotica, prednison, e.d. moeten we ons realiseren dat geen enkel gedomesticeerd levend wezen vrij is van deze erfelijke tendensen.

Afhankelijk van de zwaarte van de erfelijke belasting zal er een middel (nosode) moeten worden ingezet tijdens de behandeling. “Nosode” komt van het Griekse woord “nosos” dat ziekte betekent; nosodes worden gemaakt van ziekteeweefsel of excreties.

Het inzetten van nosodes op de erfelijke tendens heeft als doel de Dynamis te ontlasten zodat het onbelast (op de eventueel daarnaast ingezette middelen) kan reageren; de tendensen kunnen namelijk een blokkerende factor in de behandeling zijn.

Er bestaan twee erfelijke tendensen, te weten de tuberculinische en de carcinogene tendens.

Bij de tuberculinische tendens is er sprake van een predispositie (gevoeligheid/zwakheid) binnen het dier voor ontstekingen. De nosode op deze tendens is Tuberculinum, afkomstig van het ziekteproces (pus) veroorzaakt door de tuberkelbacil en heeft daardoor een relatie met ontstekingen en is in die zin bacterieel georiënteerd (extracellulaire processen).

Tuberculinum heeft daarnaast een relatie met de luchtwegen, locomotie en het endocriene stelsel.

Is er sprake van een carcinogene tendens dan zie je een grote gevoeligheid in het dier; alles komt diep in het systeem binnen, ook psychisch. De nosode op deze tendens is Carcinosinum, afkomstig van kankercellen van borstkanker. Kanker is een intracellulair proces; het neemt de identiteit van een gezonde cel als het ware over, net zoals een virus dat doet. Daarom heeft Carcinosinum een relatie met intracellulaire ziekteprocessen.

**Iatrogenen**

Onder dit bloemblad worden alle gebruikte medicatie en vaccinaties geschaard.

Iatrogenen is de wetenschappelijke term voor: veroorzaakt door medische handelingen (van het oud Grieks: “iatros” = arts en “geen” = gemaakt door). Dit kunnen bijvoorbeeld fytotherapeutische middelen, antibiotica, pijnstillers, wormmiddelen, anti-epileptica en dergelijke betreffen. Kortom, alle medicatie valt hier homeopathisch gezien onder.

De ziekteuitingen van deze iatrogene belasting worden echter in het acut-miasmatische bloemblad vermeld. Ook hier is het de constitutie (de individuele vertaalslag van de erfelijke informatie) die bepaalt of en zo ja, welke klacht of klachten er vertoond worden.

De reactiekracht van de Dynamis wordt door medicijngebruik beïnvloed. De iatrogene belasting werkt direct als een rem op de reactiekracht van de Dynamis en heeft daardoor direct invloed op het herstelvermogen van de patiënt.

**Incidenten**

In dit bloemblad komt de biografie van het dier terecht. Het overlijden of herplaatsen van een roedel/kuddegenoot of het te vroeg bij de moeder weghalen kan van grote invloed zijn op het ontstaan van klachten. Ook de manier waarop met het dier wordt omgegaan valt hieronder, bijvoorbeeld te harde training, of dat het dier slechts als gebruiksvoorwerp wordt gezien. Vaak betreffen dit dieren die met een bepaalde intentie zijn aangeschaft (dressuur, agility, show) maar niet aan deze verwachting kunnen voldoen wat leidt tot ergernis bij de eigenaar.

**Tussenziektes**

Dit betreffen epidemische ziektes die via besmetting van buitenaf worden overgebracht; bijna alle ziektes die in deze scriptie behandeld worden vallen hieronder. Maar ook een vlooienbesmetting of
een uitbraak van oormijt of schurft bij een groep dieren zijn voorbeelden van tussenziektes. Ondanks een bekend ziekteverloop moet er ook bij epidemische ziektes gekeken worden naar de individuele ziektesymptomen.

Hahneman zegt daar nog over:

§ 100 Als men het complete symptomenbeeld van epidemische ziekten of sporadisch voorkomende aandoeningen uitzoekt, is het volkomen om het even of er ooit ter wereld al eens iets dergelijks onder de een of andere benaming is voorgekomen. Ten aanzien van onderzoek of behandeling maakt het nieuwe of bijzondere van zo’n ziekte geen verschil. De arts moet immers toch al het zuivere beeld van iedere n ú heersende ziekte beschouwen als nieuw en onbekend en het zelf grondig onderzoeken, wil hij tenminste een echte, serieuze geneeskundige zijn. Dat wil zeggen, hij moet nooit vermoeden zetten in plaats van waarneming en nooit een enkel ziektegeval, dat hem ter behandeling is toevertrouwd, geheel of gedeeltelijk bekend veronderstellen, als hij niet zorgvuldig al de uitingen ervan heeft nagespeurd. Dat is in dit geval des te noodzakelijker, omdat iedere heersende epidemie in veel opzichten eigensoortig op zichzelf staat en bij nauwkeurig onderzoek zeer blijkt af te wijken van alle vroegere, ten onrechte met bepaalde namen aangeduide ziekten. Een uitzondering moet men maken voor de epidemieën van een steeds gelijk blijvende smetstof, de pokken, de mazelen, enz.

In de daarop volgende paragrafen legt hij verder nog uit dat door bij een epidemie alle symptomen van de verschillende patiënten te noteren het ziektebeeld duidelijker zal worden, want niet elke patiënt zal alle mogelijke ziektesymptomen laten zien, maar door alle verschijningsvormen van een ziekte te kennen is het vinden van een passend geneesmiddel veel eenvoudiger:

§104 Als eenmaal de totaliteit van de symptomen, die het ziektegeval in het bijzonder bepalen en kenmerken, met andere woorden het ziektebeeld, van de een of andere soort nauwkeurig is vastgelegd, dan is het zwaarste werk ook klaar. Dan heeft de geneeskundige dit beeld bij de behandeling van vooral de chronische ziekte altijd voor ogen, hij kan het in alle details doorzien. Hij kan de typerende verschijnselen er uit lichten om daartegen (en dat is dus tegen de kwaal zelf) een nauwkeurig overeenkomende, kunstmatige ziektekracht in de vorm van het homeopathisch gekozen middel in te zetten.

Organen

Wanneer er sprake is van een orgaanziekte zouden de hierbij behorende symptomen in feite onder het acuut-miasmatische bloemblad geschaard kunnen worden. Organen zijn echter als aparte classificatiecategorie toegevoegd omdat veel behandelingen stagneren op een blokkerend orgaan. De stoffelijke orgaanopathologie is dan zo ver voortgeschreden (vaak nog niet eens zicht- of meetbaar) dat dynamische middelen hun werk niet of onvoldoende kunnen doen. Door stoffelijk (met oertincturen of spagyrische middelen) voor te schrijven op het betreffende orgaan(systeem) kan de blokkade van dat orgaan opgeheven worden waardoor de Dynamis de mogelijkheid krijgt om onbelast op de energetische middelen te reageren. Bij vaccinaties is de milt als orgaan betrokken.

Degeneratief stoffelijk functioneel

Onder deze categorie vallen alle processen die zover in functie zijn afgenomen dat ze verstoffelijkt zijn en niet meer omkeerbaar. Denk hierbij aan ernstige artrose, longemfyseem, maar ook castratie of amputatie van ledematen. Ondanks dat van omkering geen sprake meer is, is het wel mogelijk om de resterende gezondheid te optimaliseren. Denk bijvoorbeeld bij longemfyseem aan de longblaasjes die niet aangetast zijn; hun functie kan door middel van homeopathische geneesmiddelen geoptimaliseerd worden waardoor er uiteindelijk toch een toename van gezondheid/welbevinden plaats zal kunnen vinden.
Hoe passen vaccinatie en vaccinosis nu in dit verhaal?

Vaccinatie homeopathisch gezien

In de tijd van Hahnemann stond vaccineren nog in de kinderschoenen. Hahnemann was een tijdgenoot van de ontdekker van vaccinatie, Edward Jenner, en vertelt in de Organon niet veel over het onderwerp vaccineren maar vermeldt wel in het hoofdstuk "Allopathische methode" (§ 56, voetnoot) het volgende:

Diegenen die het eerste de z.g. isopathie ter sprake brachten, dachten waarschijnlijk aan de weldaad, die de mensheid ontving door de toepassing van de koepokvaccinatie, waardoor de gevaccineerde vrij bleef van alle toekomstige pokkenbesmettingen en als het ware bij voorbaat daarvan genezen werd. Maar koepokken en mensenpokken zijn slechts zeer gelijkende en zeker niet dezelfde ziekten. In veel opzichten wijken ze van elkaar af, met name door het snellere verloop en de mildheid van de koepokken, maar vooral in het aspect, dat koepokken nooit door pure nabijheid de mens besmetten. Op deze manier is er door de algemene verbreiding van deze vaccinatie aan alle epidemieën van die dodelijke, verschrikkelijke variola zodanig een eind gemaakt, dat de huidige generatie zich helemaal geen voorstelling van die vroegere pokkenpestilentie meer kan maken. Zo zullen ook in de toekomst enkele bij dieren voorkomende ziekten ons geneesmiddel en verschaffen voor zeer gelijkende, belangrijke mensenziekten en daarmee ons homoeopathische geneesmiddelaarsenaal op gelukkige wijze complementeren. Maar met een menselijk ziekte-agens (bijv. met een psoricum uit mensenscabiës, eenzelfde mensenziekte, scabiës of de daaruit ontstane complicaties) willen genezen - dat zij verre! Daar komt alleen maar ellende en verergering van de ziekte van.

In § 46 (interactie van gelijkende ziekten) vermeldt hij:
Omgekeerd kan de bijna rijpe koepok door haar grote gelijkenis de daarna uitbrekende mensenpok (homoeopathisch) op zijn minst veel milder en goedaardiger laten verlopen.

Hier wordt de koepok dus als (ongepotentieerd) geneesmiddel ingezet en niet als vaccinatie.

In de daarbij behorende voetnoot (8):
Dit lijkt de oorzaak te zijn van het zo heilzame, merkwaardige feit dat, sinds de algemene verbreiding van de vaccinatie vlg. Jenner, de variola bij ons nooit meer zo epidemisch en ernstig voorkomen als 40-50 jaar geleden, toen in een getroffen stad minstens de helft, soms driekwart van de kinderen aan die ellendige pestilentie stierven.

Hahnemann lijkt dus erg ingenomen te zijn met de ontdekking van vaccinatie. Al gebruikt hij het in onze ogen als bewijsmateriaal dat gelijkende ziektes elkaar kunnen opheffen, wat geheel in overeenstemming is met de door hem ontdekte theorie van de gelijksoortigheid. In paragrafen 44 en 45 schrijft hij daarover:

§ 44. Twee zo gelijkende ziekten kunnen elkaar niet verdringen (iemand die al aan een ernstige chronische ziekte lijdt, zal door een najaarsdysenterie of een andere gematigde epidemie niet worden geïnfecteerd, § 36) of blokkeren (schurft verdween als er scheurbuik optrad en keerde terug na genezing ervan, § 38), zodat de eerste ziekte na afloop van de tweede zou terugkeren. Net zo min kunnen ze in hetzelfde organiseer naast elkaar bestaan (zo kan een syfilispatiënt ook nog scabies krijgen en omgekeerd, § 40) of een dubbele, een complexziekte vormen.

Hahnemann heeft het hier over verschillende dingen, hij legt hier uit wat 2 gelijkende ziekten niet kunnen doen en vertelt daarmee tegelijkertijd wat 2 niet gelijkende ziekten wel kunnen doen (waarvan wij voorbeelden hebben geciteerd uit § 36, 38 en 40).

§ 45. Nee, twee gelijkende ziekten (natuurlijk of kunstmatig), verschillend van aard maar overeenkomend in hun uitingen en effecten, in het lijden dat ze veroorzaken en de geproduceerde symptomen, zullen altijd en overal elkaar vernietigen, zodra ze in een organismen samen komen. De sterkere zal dan de zwakkere vernietigen om de eenvoudige reden, dat het sterkste pathogene agens
een soortgelijke maar *grotere affiniteit* heeft voor *die zelfde* organen, die eerst door het zwakkere agens aangetast waren. Dat zwakke agens dooft uit, omdat het niet meer inwerken kan. Of anders gezegd, het levensbeginsel als eenheid wordt de zwakkere inwerking niet meer gewaar, zodra een gelijkende maar sterkere ziektekracht zich van het gevoel van de patiënt meester maakt. Dat zwakke agens is uitgedoofd en bestaat niet meer, want het was nooit materieel aanwezig, alleen als dynamische aandoening. Het levensbeginsel is nu alleen nog maar aangetast door de gelijkende, sterkere ziektekracht van het geneesmiddel en dat is maar tijdelijk.

Hahnemann stelt hier dus dat 2 ziektes die in uitingsvorm erg op elkaar lijken, elkaar in feite opheffen en datgene doen wat een goed gekozen homeopathisch geneesmiddel ook doet, namelijk het levensbeginsel - de Dynamis - aanzetten om zich te richten op de sterkere kunstmatige ziektekracht, waardoor de zwakkere natuurlijke ziektekrankheid uitdoofd.

In 1884 werd het boek "Vaccinosis and its cure by Thuja" geschreven door de Britse homeopaat James Compton Burnett (1840-1901) gepubliceerd. Enkele citaten hieruit:

*It may safely admitted that no one can be more than perfectly healthy, and may modification or altering of perfect health must result in a minus, i.e., less than perfect health; and less than perfect health must necessarily be disease or ill health of some sort and in some degree. Hence it follows that the protective power of vaccination is due to a diseased state of the body.*

*Latent vaccinosis.*
The vaccinate is one who is suffering from vaccinosis; he may not be ill in the ordinary sense, but he must be in a subdued morbid state, he has been blighted, or he is no vaccinate; it is his diseased condition that protects him for smallpox.

Burnett zegt hier dat vaccineren chronisch ziek maakt. En dat deze ziekte toestand juist beschermt tegen de pokken. Dit lijkt erg op Hahnemann’s theorie van de gelijkende ziektes, dat er maar plaats is voor 1 (gelijkende) ziekte.

*... for the simple reason that homeopathy is a system of curing - similia similibus curanter - whereas vaccination is not a curative measure at all, but a preventive one. And since prevention is admittedly, better than cure, it must follow that it cannot be the same; therefore, vaccination is not homeopathy, though I shall suggest that it fitly be termed Homeoprophylaxis, inasmuch as vaccinia and variola are similar pustular diseases, and the former being preventive of the latter, it may be in obedience to the principle - LIKE PREVENTS LIKE. (blz 95)*

Burnett zegt hier dat je vaccinatie niet onder de naam van homeopathie kunt laten vallen, dat homeopathie een geneeswijze is terwijl vaccinatie preventief wordt gegeven, om ziektes te voorkomen.

In de tijd van Hahnemann werd er bij het vacineren gebruik gemaakt van een onbewerkte smetstof van een gelijkende ziekte (koepok) en ontbraken hulpstoffen en adjuvantia. Door het vaccineren (het inbrengen van de koepoksmetstof in de huid) werden de mensen wel ziek, maar ze maakten een veel mildere variant van de pokken door waardoor ze niet meer ziek werden als de mensenpok voorbij kwam.

De huidige manier van vaccineren is geheel anders;
- Ten eerste komen de meeste vaccinaties op een onnatuurlijke manier (d.m.v. een naald) diep het systeem binnen en wordt het primaire afweermechanisme (slijmvlies/huid) overgeslagen waardoor alleen maar de antilichaamrespons wordt gestimuleerd in tegenstelling tot het normale proces van ziek worden en herstellen (Susan Curtis: Homoeopathy, Immunity and infectious disease (blz 5)). Daardoor belast een vaccinatie direct het immuunsysteem.
- Ten tweede gaat het om een bewerkt en verzwakt vaccin; er zitten hulpstoffen en adjuvantia in.
• Ten derde wordt er regelmatig gebruik gemaakt van dezelfde (bewerkte) smetstof als de ziekte zelf, iets waarvoor Hahnemann juist in voetnoot 1 van § 56 waarschuwt dit niet te doen (we beseffen dat hij het hier over genezing heeft terwijl vaccinaties juist preventief beogen te zijn): Maar willen genezen door precies eenzelfde ziekte-agens gaat tegen elk gezond verstand en daarom ook tegen elke ervaring in. …Daar komt alleen maar ellende en verergering van de ziekte van.

• Ten vierde wordt er veelvuldig gebruik gemaakt van combinatievaccins; deze zorgen ervoor dat het immuunsysteem nog eens extra onder druk komt te staan.

Richard Moskowitz verwoordt het in ‘The case against immunizations’ op deze wijze:
In contrast, when the artificially attenuated measles virus is injected directly into the blood, it bypasses the normal portal of entry, producing at most a brief, mild inflammatory reaction at the injection site, but no incubation period, no local sensitization, no real possibility of eliminating it via the same route, and no generalized immune response to prime the immune system in the future. Indeed, by cheating the body in this fashion, we have accomplished precisely what the evolution of the immune system seems to have been designed to prevent: we have introduced the virus directly into the blood and given it free, immediate access to the major immune organs without any obvious way of getting rid of it.

De huidige manier van vaccineren moet daarom gezien worden als een medische handeling; er wordt kunstmatig iets toegediend aan een levend wezen. In de homeopathie spreken we dan, zoals al eerder uitgelegd, van een iatrogene belasting. En hoewel een vaccinatie in feite een exogene factor is (er wordt iets van buitenaf in het lichaam gebracht), wordt het direct endoegene aangezien de medicatie zich als het ware direct hecht aan de Dynamis; de iatrogene belasting drukt zich daardoor endoegene uit. We kunnen ons deze belasting voorstellen als een rem die de Dynamis verhindert om een reactiekracht van 100% te tonen; in feite betekent dit dus toenemende psora.

Het beoogde doel van vaccineren - bescherming bieden tegen ziektes – kan geheel anders uitpakken: het immuunsysteem wordt meer belast (de druk in de pan neemt toe), de Dynamis heeft minder vitaliteit en is daardoor juist minder in staat om te reageren op ziekteagentia of de vaccinatie zelf met als gevolg: ziekte.

Vaccinosis
Vaccinosis is een Engelse term en betekent niets anders dan klachten na vaccinatie. Volgens ons is deze term voor het eerst gebruikt door J. Compton Burnett. Hij maakt bij klachten veroorzaakt door vaccinatie ook nog onderscheid in ziektes veroorzaakt door de 'smetstof' en chronische klachten die we onder de noemer scharen ‘never well since…’. Dit kan ook pas maanden na vaccinatie naar voren komen (zeker bij dieren, daar zie je de symptomen pas relatief laat, mensen kunnen hun ‘malaise’ vaak al in een veel eerder stadium beschrijven).

Richard H. Pitcairn, Doctor of Veterinary Medicine, Ph.D., Animal Natural Health Center, Eugene Oregon, USA, heeft enkele interessante onderzoeken over vaccinosis gedaan waaruit wij een aantal voorbeelden noemen. Hij roemt met name de observatie van J. Compton Burnett dat juist de persoon die het meest vatbaar is voor de ziekte waarvoor hij gevaccineerd is, meer kans heeft om te overlijden wanneer hij na vaccinatie in aanraking komt met deze ziekte. Met andere woorden; in plaats van het individu te beschermen zoals bedoeld, wordt men er in feite meer vatbaar voor.

Volgens Pitcairn is er bewijs dat dit precies is wat er gebeurt in gevaccineerde populaties; we kunnen onze definitie van vaccinosis uitbreiden door te zeggen dat vaccinosis - en niet de acute natuurlijke ziekte - de veroorzaker is van een chronische conditie, die alle tijd heeft om een veelheid van symptomen te ontwikkelen die je normaal gesproken niet zou zien bij die specifieke acute ziekte. Een andere manier om dit te zeggen is dat de laboratorische verandering van een virus naar een vaccinvirus de verandering is van een acute ziekte naar een chronische ziekte; het virus is zo veranderd dat de natuurlijke neiging om een sterke reactie op te wekken, is verdwenen. Het bewerkte virus wordt in een lichaam ingebracht waarbij het nauwelijks reactie oproept. Het resultaat hiervan is
een chronische ziekte die men nog niet eerder is tegengekomen. Pitcairn noemt een drietal voorbeelden om duidelijk te maken wat hij hiermee bedoelt.

**Chronic hondenziekte.**

Hondenziekte is een ziekte die al heel lang bestaat en is aan de symptomen goed herkenbaar. Volgens het boek “The Infectious Diseases of Domestic Animals” zijn de belangrijkste symptomen:

- Waterige uitscheiding uit ogen en neus.
- Conjunctivitis met uitscheiding (uiteindelijk met pus).
- Overgeven en diarree, gebrek aan eetlust.
- Waterige ontslating, gemengd met slijm, stinkende en vaak bloederige ontslating; intense malaise, gewichtsverlies en uiteindelijk dood.
- Ernstige, stinkende, diarree.
- Spasmen, stuipen, epileptische aanvallen.
- Verlamming.
- Uitslag rond de bek waar de vacht overgaat in de huid van de lippen.
- Opgezwollen poten, rode voetzolen.
- Longontsteking.

Pitcairn stelt dat vanwege herhaalde vaccinaties de acute (originele) hondenziekte veranderd is van vorm en momenteel verschijnt in een veelvoud van chronische aandoeningen.

<table>
<thead>
<tr>
<th><strong>Acute vorm van hondenziekte</strong></th>
<th><strong>Chronisch/Nieuw acuut</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>Waterige uitscheiding uit ogen en neus.</td>
<td>Doorlopend druppelen van waterige vloeistof uit de neus.</td>
</tr>
<tr>
<td>Intense malaise, gewichtsverlies en uiteindelijk de dood. Ernstige stinkende diarree.</td>
<td></td>
</tr>
<tr>
<td>Uitslag rond de bek waar het haar overgaat in onbehaarde huid of lippen.</td>
<td>Lipploli dermatitis. Allergieën.</td>
</tr>
<tr>
<td>Zwelling van de poten, rode voetzolen.</td>
<td>Gewoonte om poten te likken; uitslag tussen de tenen, ontsteking en zwelling van de tenen &amp; onderzijde poten; tussenteen dermatitis. Allergieën.</td>
</tr>
<tr>
<td>Uitslag of puisten op de huid - op de buik, binnenzijde dijen en andere plekken.</td>
<td>Chronische huiduitslag ... buik, binnenzijde dijen en onderzijde van het lijf. Allergieën.</td>
</tr>
<tr>
<td>Vermagering.</td>
<td>Gedijt niet goed, abnormaal mager.</td>
</tr>
</tbody>
</table>

Volgens Pitcairn laat de bovenstaande tabel zien dat de originele ziekte - hondenziekte - voor het grootste deel is veranderd in hondenziekte-*vaccinosis*, een chronische ziekte die veel variëteiten kent. Deze chronische ziekte maakt het organisme ook vatbaar voor nieuwe acute vormen van hondenziekte zoals het parvovirus. Van oorsprong hebben chronische ziektes zich meer kunnen ontwikkelen dan acute ziekte waardoor de vele uitingen van deze chronische condities nieuwe namen hebben gekregen vanuit de foutieve gedachte dat het om nieuwe en onderscheidende ziektes ging; aldus Pitcairn.

**Chronische rabiës**

Pitcairn bekijkt rabiës ook op deze manier. Hij heeft ook deze ziekte in een tabel gezet met aan de linkerkant de “originele” acute aandoening en aan de rechterkant de diverse “nieuwe” aandoeningen, ontstaan door (generaties van) vaccinaties.
<table>
<thead>
<tr>
<th>Acute vorm van rabiës</th>
<th>Chronisch/Nieuw acuut</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rusteloosheid, ongerustheid/bezorgdheid en het ontwikkelen</td>
<td>Rusteloos van aard, achterdochtig naar anderen, onvriendelijk tegenover andere dieren, wens om te doden.</td>
</tr>
<tr>
<td>van kwaadaardigheid.</td>
<td>Agressie en wantrouwen naar vreemden toe, speciaal tegenover mensen in uniform.</td>
</tr>
<tr>
<td>Dit wordt het meest zichtbaar tegenover vreemden.</td>
<td></td>
</tr>
<tr>
<td>Normaal aanhankelijke honden kunnen zich verstoppen en</td>
<td>Gedragsverandering: afstandelijk; van aanhankelijk naar onafhankelijk.</td>
</tr>
<tr>
<td>gezelschap vermijden.</td>
<td></td>
</tr>
<tr>
<td>Normaal zelfstandige honden kunnen ongewoon atten en</td>
<td>Opdringerig gedrag, angst om alleen gelaten te worden. Volgt de eigenaar van kamer naar kamer. Wil fysiek contact.</td>
</tr>
<tr>
<td>aanhankelijk worden.</td>
<td></td>
</tr>
<tr>
<td>Behoefte om ver van huis te gaan.</td>
<td>Neiging om aan opsplitsing te ontsnappen en te zwerven.</td>
</tr>
<tr>
<td>Indien aangrijpald dan zal het venijnig kauwen op de ketting of iets waarmee het is aangrijpend.</td>
<td>Pogingen om aan te lijnen resulteren in hysterisch, kwaadaardig gedrag. Verzet kan zo extreem zijn dat zij zichzelf verwonden.</td>
</tr>
<tr>
<td>De hond kan zichzelf ernstige bijtzwichten toebrengen.</td>
<td>Automutilatie; staart-kauwen, bijten op tenen of poot (gezien in ernstige allergische zenuw aandoening).</td>
</tr>
<tr>
<td>Vreemde kreten en hees gehuil (gedeeltelijke verlamming van</td>
<td>Veranderd stemgeluid; heesheid.</td>
</tr>
<tr>
<td>de stembanden.</td>
<td>Enorme neiging te blaffen of om vocaal te zijn.</td>
</tr>
<tr>
<td>Geen interesse in eten.</td>
<td>Chronisch slechte eetlust; zeer kieskeurig.</td>
</tr>
<tr>
<td>Niet in staat te slikken vanwege spierverlamming. Het laten hangen van de onderkant.</td>
<td>Verlamming (of gedeeltelijke verlamming) van de bek, tong of keel; slobberige eters en drinkers; neiging tot kwijlen of het druppelen van speeksel.</td>
</tr>
<tr>
<td>Starende ogen met verwijding van de pupil.</td>
<td>Zichtverlies, cataract, visuele aandoeningen.</td>
</tr>
<tr>
<td>Niet in staat de ogen te sluiten; het hoornvlies is droog geworden en dolf.</td>
<td>Keratitis sicca, &quot;droge ogen&quot;.</td>
</tr>
<tr>
<td>Het inslikken van stukken, stenen, zijn eigen ontslating en andere vreemde objecten.</td>
<td>Gewoonte om hout, stenen, stokken en aarde te eten. Uitzonderlijke wens om ontslating te eten; van zichzelf of van andere dieren.</td>
</tr>
<tr>
<td>Vernielen van dekens, handdoeken, kleding.</td>
<td>Vernielzuchtig gedrag en stukscheuren van dekens of ander beddengoed.</td>
</tr>
<tr>
<td>Convulsies.</td>
<td>Convulsies, epilepsie, onwillekeurige bewegingen, spiersamentrekkingen, enz.</td>
</tr>
<tr>
<td>Gebrek aan spiercoördinatie.</td>
<td>Ataxie.</td>
</tr>
<tr>
<td>Enorme pijn en samensnoering van de keel; spasmen van de keel.</td>
<td>Psychomotorisch epilepsie syndroom.</td>
</tr>
<tr>
<td>Toegenomen seksueel verlangen; sterk (onacceptabel) ontwikkeld libido, nymfomanie, poging tot verkrachting.</td>
<td>Toegenomen seksueel verlangen, zelfs bij gecastreerde reuen; rijen, seksuele agressie.</td>
</tr>
<tr>
<td>Ontsteking van de hartsclief; verstoorde hartfunctie; onregelmatig ritme, hartslag te langzaam of te snel; hartfalen.</td>
<td>Onregelmatige pols; hartfalen.</td>
</tr>
<tr>
<td>Perioden van opwinding en schokkerig ademhalen; clusterademhaling (ademhalingspatroon waarbij dicht opeenvolgende ademhalingen gevolgd worden door apneu).</td>
<td>&quot;Reverse&quot; sneezing aanvallen.</td>
</tr>
</tbody>
</table>

Met bovenstaande voorbeelden laat Pitcairn zien dat vaccinosis veel meer is dan het hebben van acute klachten direct na vaccinatie.

Volgens hem zijn wij niet bekend met deze symptomen van rabiës-vaccinosis omdat, tot het moment dat vaccins op brede schaal werden toegepast, we nooit rabiës in chronische vorm in onze patienten hebben waargenomen. Tot op heden worden deze effecten van rabiësvaccinaties over het algemeen niet herkend, terwijl een follow-up van veranderingen in gedrag en fysieke conditie na rabiësvaccinaties dit eenvoudig zou kunnen bevestigen.

Pitcairn stelt dus dat door het vaccineren geen ziektes zijn bestreden of geëlimineerd, maar dat slechts hun uitingvorm is veranderd.

Tegenwoordig erkennen steeds meer mensen de theorie van Burnett en Pitcairn (zoals bijvoorbeeld Dr Patricia Jordan en Christopher Day (beiden dierenarts)) en stellen dat er door te vaccineren in feite een chronische ziekte wordt gecreeerd. Chronische ziektes kennen over het algemeen een veel minder heftig beeld dan acute ziektes. Juist de heftigheid van een acute ziekte zorgt er voor dat het organisme flink gaat reageren waardoor er (soms heftige) opruimreacties plaatsvinden zoals braken en diarree, hoesten en niezen al dan niet met loopneuzen, verhoogde urineproductie, huiduitslag en zweet ten gevolge van een koortsaanval wat allemaal manieren zijn om het organisme te ontlasten; om de energie van de ziekte uit het lichaam te drijven. En sommige ziektes kunnen bij een dier zulke heftige reacties veroorzaken dat het dier er aan overlijdt. Net als bij klachten na vaccinatie moet dan ook worden gekomen naar de gevoeligheid van de patiënt zelf; want lang niet elk dier dat in contact komt met dat betreffende virus wordt ziek, of in dezelfde mate ziek.
Als we weer teruggaan naar het plaatje van de hogedrukpan, dan is het voor te stellen dat een jaarlijkse vaccinatie bijdraagt aan toenemende psora. Afhankelijk van de predispositie van de gevaccineerde, kan een enkele vaccinatie al genoeg zijn om de druk in de pan zo hoog op te laten lopen dat er onmiddellijk klachten waarneembaar zijn, maar er kunnen ook dagen, weken, maanden of jaren overeen gaan voor dit punt bereikt is. En dan kun je een hele lange discussie aangaan of er sprake is van vaccinosis of niet. The American Institute of Medicine bracht in 1993 al een rapport uit waarin ze concludeerden dat het bewezen was dat vrijwel alle vaccins die aan kinderen werden gegeven schade veroorzaken.

De vraag is dus niet óf vaccinosis voorkomt, maar hoe en in welke vorm het voorkomt en wat wij als veterinair klassiek homeopath voor deze dieren die hier gevoelig voor zijn kunnen betekenen.

De behandeling van vaccinosis

"Een ongeluk komt nooit alleen." Vervang in deze zin ongeluk door ziekte en je hebt meteen de stelregel binnen de homeopathie: een ziekte komt nooit alleen. Want een ziekte is veel meer dan een verzameling symptomen van ziek zijn, er hoort een patiënt bij! Zonder dit unieke individu was deze ziekte niet mogelijk. En net zoals elke patiënt een uniek individu is, zo zijn diens symptomen dat ook. En net zoals elke patiënt een uniek individu is, zo zijn diens symptomen dat ook.

De behandeling van vaccinosis

Net als bij alle andere ziektegevallen moeten we bij vaccinosis dus kijken naar de individuele symptomen van die ene patiënt. Er is geen standaard behandeling; de enige standaard in onze behandeling is dat we een uitgebreide anamnese afnemen waarin we nauwkeurig alle bijzonderheden van de patiënt, zijn (leef)omgeving en zijn ziektebeeld noteren en dat analyseren met behulp van het ziekteclassificatiemodel.

Dat betekent dat er geen standaard middel is bij klachten na vaccinatie. Er zijn wel een paar middelen die heel dienstbaar kunnen zijn bij de behandeling van vaccinosis en daar gaan wij in het volgende hoofdstuk wat uitgebreider op in, maar er is dus geen middel dat je standaard inzet bij klachten na vaccinatie. We gaan in eerste instantie altijd uit van de symptomen die de individuele patiënt laat zien.

We zijn als veterinair klassiek homeopathen dan ook niet meteen afhankelijk van een diagnose; op basis van het beeld dat het dier laat zien en de extra informatie die de eigenaar ons geeft, kunnen wij een behandeling starten.
MATERIA MEDICA

§ 143. Als men nu een aanmerkelijk aantal simplicia op deze manier bij de gezonde mens uitgeprobeerd heeft en alle ziekte-elementen en symptomen, die ze uit zichzelf als kunstmatige pathogene agentia kunnen opwekken, zorgvuldig en waarheidsgetrouw heeft genoteerd, dan pas heeft men een echte materia medica. Dat is een verzameling van de werkelijke, pure, onbedrieglijke werkingen van de enkelvoudige geneesmiddelsubstanties.

Die materia medica bevat, in een woord, kunstmatige ziekte-toestanden, die voor de gelijkende natuurlijke ziekte-toestanden de enige echte homoeopathische, d.w.z. specifieke geneesmiddelen bieden, ten behoeve van een zekere en duurzame genezing.

Zoals we in het vorige hoofdstuk al hebben uitgelegd zijn er bij het behandelen van klachten na vaccinatie geen standaard middelen die worden voorgeschreven omdat er wordt voorgeschreven op het beeld van de specifieke symptomen van de ziekte.

De aanleiding moet uiteraard in de behandeling worden meegeno men. Bij het repertoriseren worden er in de Synthesis bij de rubriek 'Generals, Vaccination, after' 30 middelen genoemd:

**GENERALS - VACCINATION, after**


Van deze 30 middelen zijn er overigens slechts 3 4-vaardig, 4 3-vaardig, 10 2-vaardig en 13 1-vaardig. Het lijkt ons weinig zinvol die hier allemaal apart te gaan behandelen.

Wij hebben voor de Materia Medica in deze scriptie gekozen voor 3 middelen die allemaal een grote relatie hebben met de rubriek klachten na vaccinatie; de 3 4-vaardige middelen Silicea, Thuja en Sulphur.

**Silicea (Vuursteen, Kwarts)**

Kwarts is een mineraal dat in verschillende hoedanigheden voorkomt. De samenstelling is wel hetzelfde: alle kwarts (siliciumdioxide of kiezelzuur: SiO₂) is opgebouwd uit een verbinding van silicium (Si) en zuurstof (O₂) en heeft dezelfde kristalstructuur. Kwarts kan doorzichtig zijn (bergkristal), maar ook volledig ondoorzichtig (vuursteen en kiezelsteen) en het kan vele verschillende kleuren hebben.

De bekende Franse bacterioloog Louis Pasteur vestigde in 1878 de aandacht op een mogelijke rol van silicium voor het organisme; zijn kerngedachte over silicium was dat het een voor het leven absoluut noodzakelijk sporenelement is. Sinds de 19e eeuw komen er siliciumrijke kruidenpreparaten op de markt. In de 20e eeuw wordt Silicea de merknaam voor kiezel(zuur).

Silicium is na zuurstof het meest voorkomende element op aarde; de aardkorst bestaat voor 27,7% uit silicium.

Er is geen enkel organisme dat geen silicium in zich heeft. Als we kijken naar de plant, dan treffen we silicium aan in de steel, in het cellmembraam van het epiderm en in de bladhaartjes. Het feit dat silicium een universeel bestaande deel is van allerlei zaadsoorten, bevestigt dat de aanwezigheid van silicium verbonden is met de vormgevende kracht die een belangrijke rol speelt in de eerste stadia van de ontwikkeling. Vooral planten met elastische stelen zijn bijzonder rijk aan silicaten, zoals grasachtigen (tarwestro kan voor 68% uit silicium bestaan), niet, varens (62%), paardestaartachtigen (tot 90% in de as ervan) en als laatste het zeer elastische Indisch bamboe, waarvan de steel
gekristalliseerde silicaten bevat. Deze planten behoren tegelijkertijd tot de rijk gevarieerde flora die in de vroegste ontwikkelingsstadia van de wereld het aardoppervlak bedekten, hetgeen weer wijst op het belang van de silicon-krachten voor het beginstadium van de groei.

Een ander voorbeeld van het belang van silicon voor het plantenrijk vormt plankton, een verzamelnaam voor organismen die voornamelijk drijvend in het water leven, en daardoor voor hun verplaatsing afhankelijk zijn van de heersende stromingen. Hiertoe behoren ook de kiezelwieren (Diatomeeën), een klasse van eencellige wieren met een extern skelet van kiezel. De groei hangt af van de beschikbaarheid van voldoende kiezelzuur (een zwak zuur dat is afgeleid van siliciumdioxide). Diatomeeën zijn verantwoordelijk voor de helft van de primaire voedselproductie van zeeën en oceanen en vormen een belangrijke bijdrage aan de zuurstofproductie van de wereld. Zonder silicon zou er amper of geen biologisch leven op aarde zijn.

Hoewel sommige planten zonder silicon kunnen groeien, blijkt dat de groei verbetert bij de aanwezigheid van (opneembaar) silicon. Kiezelzuur verhoogt de afweer van planten; er is meer weerstand tegen ziektes en tegen insecten en ongunstige klimaatomstandigheden zoals droogte en hitte. Het mechanisme hiervan wordt toegeschreven aan de vorming van een silicagellaag in de celwand van de bladeren. Er vormt zich een siliciumpanter dat de mechanische afweer van de plant verhoogt en de transpiratie van de bladeren vermindert. Naast deze mechanische factor blijkt silicon ook de afweer van de plant te verhogen door activering van het immuunsysteem. Het biedt het afweersysteem een voedingsbodem, die de plant (maar hetzelfde principe geldt ook voor dieren en mensen) in staat stelt infecties en gifstoffen uit het milieu met succes te bestrijden.

Net als in het plantenrijk is silicon ook bij mens en dier onontbeerlijk. In het begin van de jaren ’70 van de vorige eeuw wordt door Edith Carlisle en Klaus Schwarz aangetoond dat silicondeficiënt voer bij kippen leidt tot allerlei afwijkingen en groeivertragingen. Er worden aan zowel huid en huidgerelateerde structuren (kammen, veren) als aan bot en kraakbeen afwijkingen gevonden. Zo komen er schedelafwijkingen voor en de botten van de poten zijn korter en dunner en breken sneller. Bij verdere analyse blijkt dat vooral de aanmaak van collageen is verminderd, terwijl ook de calcificatie afneemt. De conclusie van Carlisle is dat silicon vooral in de groeifase een belangrijke rol speelt in de botaanmaak. Behalve dat een silicontekort leidt tot een verminderde collageenaanmaak stimuleert extra silicon de collageenproductie.

Ook bij paarden werd een dergelijk onderzoek gedaan (Lang, 2001). Extra silicon leidt tot een hogere Si-concentratie in zowel het serum als in de melk van de paarden. Tevens werd vastgesteld dat de blessuregevoeligheid van de paarden aanzienlijk afnam, wat werd toegeschreven aan sterker bot (hoger botmineraaldichtheid).

Daarnaast blijkt uit een onderzoek van Seaborn en Nielsen in 2002 bij ratten dat de wondgenezing negatief wordt beïnvloed door een silicontekort.

Silicium kan interacties met diverse andere mineralen aangaan. Seaborn en Nielsen toonden bij hun ratten aan dat silicondeficiënte voeding leidt tot een dalings van mineralen in botweefsel zoals calcium, koper, zink, kalium en fosfor.

Ook de relatie tussen silicon en aluminium is van belang. Silicon doet de opname van aluminium verminderen. Verder wordt er bij inname van een hogere dosering van silicon zuur een toegenomen uitscheiding van aluminium in de urine gezien. Dit komt ten dele doordat in het lichaam aluminium wordt gebonden door silicon, waarna dit complex door de nieren wordt uitgescheiden. Hierdoor heeft silicon een ontgiftende werking op de schadelijke werking van aluminium.

Hoge concentraties silicon zijn te vinden in bindweefsel en de daarvan afgeleide weefsels als bot, kraakbeen, pezen, huid, haar, nagels, de aorta, grote arteriën, lymfatisch weefsel, lever, nier en longen. Naast het ‘statisch’ weerstandsvermogen dat de silicaten aan het lichaam geven, mogen we veronderstellen dat het ook het ‘dynamisch’ afweerstelsel activeert, dat ook te maken heeft met het bindweefsel, waarvan het reticuloendotheliaal systeem (RES) deel uitmaakt. De witte bloedcellen ontstaan uit hetzelfde weefsel als het bindweefsel, het mesenchym (embryonaal bindweefsel) en samen met het RES vormen zij het enorme afweerstelsel van het lichaam. Gezien deze feiten mogen we silicon beschouwen als een stof die vooral van invloed is op de witte bloedcellen.
Plaats in de behandeling
Het bovenstaande verhaal maakt duidelijk dat Silicea in stoffelijke vorm werkzaam is op het immuunsysteem en een belangrijke grondstof is voor vorm en groei en daarom zullen deze eigenschappen ook aanwezig zijn in het gepotentieerde homeopathische geneesmiddel.

In de homeopathie heeft het middel de keynote: Kwalijke gevolgen van vaccinaties. Silicea is een mineraal en is daarmee een diep werkend en antipsorisch middel. Door deze diepe werking wordt Silicea meestal niet op het acute beeld ingezet; daarvoor wordt in eerste instantie, veelal, voor een plantaardig middel gekozen omdat de Dynamis bij acute klachten meestal niet genoeg ruimte heeft om te reageren op een diep werkend middel. Eerst zullen de acute klachten (wolken) moeten worden opgeruimd waardoor de druk in de pan afneemt en er daardoor ruimte in de pan zelf ontstaat om een dieper werkend middel, zoals Silicea, in te kunnen zetten.

Dat we juist dit middel in deze scriptie nader toelichten, is omdat de zogeheten Silicea constituties extra gevoelig zijn voor vaccinaties (modaliteiten: verslechtert na vaccinatie). Dit is een belangrijk middel. Eerst zullen de acute klachten (wolken) moeten worden opgeruimd waardoor de druk in de pan afneemt en er daardoor ruimte in de pan zelf ontstaat om een dieper werkend middel, zoals Silicea, in te kunnen zetten.

Daarnaast is er, zoals hierboven in stoffelijke vorm al omschreven, een duidelijk verband met het immuunsysteem en hebben we al uitgelegd dat vaccinaties het immuunsysteem onder druk zetten.

Het komt steeds vaker voor dat er auto-immuun klachten optreden na vaccinaties. Ook bij dit soort klachten wordt er in eerste instantie op beeld behandeld. Door te behandelen met een mineraal (constitutie-middel, spreek je de constitutie aan; aangezien de klacht daar zijn oorsprong heeft, is het belangrijk deze mee te nemen in de behandeling.

Repertorisatie

Cancer - VACCINATIONS, cancer after crot-h. diph. lach. maland. naja pyrog. Sil. Thuj.
Glands - Axilla, axillary, glands - abscess, axilla - vaccination, after Sil.
Lungs - ASTHMA, general - vaccination, after ANT-T. SIL. THUJ.
Shoulders - ABSCESS, shoulders - axilla - vaccination, after SIL.
Shoulders - ABSCESS, shoulders - vaccination, after SIL.
Stomach - NAUSEA, general - vaccination, after SIL.
Vaccinations - VACCINATIONS, reactions, ailments, from Acon. all-c. am-c. Ant-t. anthraci.
Vaccinations - ARMS, vaccinations, effects - red, and inflamed swellings Bell. SIL.
Vaccinations - BACKACHE, since vaccination SIL.
Vaccinations - CHRONIC, reactions calen. CARC. cic. Hyper. Led. plan. SIL. THUJ.
Vaccinations - COWPOX, vaccinia Acon. ant-t. apis Bell. merc. phos. Sil. sulph. Thuj. Vac.
Vaccinations - FEVER, after Acon. ant-c. apis ars. bapt. BELL. carc. gels. hyper. led. pyrog. SIL. Thuj.
Vaccinations - ULCERS, after sil.
1. Cancer - VACCINATIONS, cancer after
2. Clinical - convulsions, general - injuries, from - vaccination, after
3. Fevers - VACCINATION, fever, after
4. Glands - Axilla, axillary, glands - abscess, axilla - vaccination, after
5. Lungs - ASTHMA, general - vaccination, after
6. Shoulders - ABSCESS, shoulders - axilla - vaccination, after
7. Shoulders - ABSCESS, shoulders - vaccination, after
8. Stomach - NAUSEA, general - vaccination, after
9. Vaccinations - VACCINATIONS, reactions, ailments, from
10. Vaccinations - AGGRAVATION, in general, after
11. Vaccinations - ARMS, vaccinations, effects - red, and inflamed swellings
12. Vaccinations - BACKACHE, since vaccination
13. Vaccinations - CHRONIC, reactions
14. Vaccinations - COWPOX, vaccinia
15. Vaccinations - FEVER, after
16. Vaccinations - INFECTIONS, after
17. Vaccinations - ULCERS, after

<table>
<thead>
<tr>
<th>sil.</th>
<th>thuj.</th>
<th>bell.</th>
<th>carc.</th>
<th>apis</th>
<th>acon.</th>
<th>ant-t.</th>
<th>hyper.</th>
<th>led.</th>
<th>bapt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>17/46</td>
<td>10/25</td>
<td>7/14</td>
<td>7/13</td>
<td>6/8</td>
<td>5/8</td>
<td>4/7</td>
<td>4/7</td>
<td>4/7</td>
<td>4/5</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>4</td>
<td>4</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

**Sulphur** (gezuiverde zwavel)

Zwavel is een chemisch element dat reeds in de oudheid bekend was. We kennen de toepassingen van zwavel bij (zwavel)kuurbaden, luciferkopjes, buskruit en accuzuur. Verder is zwavel berucht vanwege het stinkende waterstofsulfide, wat vrijkomt bij rotting van onder meer eiwitten. Bij gewone temperatuur en druk is zwavel een gele reukloze, weinig giftige, vaste stof die niet oplosbaar is in water.

In de natuur komt zwavel als verbinding in grote hoeveelheden voor in mineralen. In vulkanische gebieden wordt het in kleine hoeveelheden in zijn elementaire vorm aangetroffen. Over de herkomst van de naam bestaan verschillende theorieën. Zo zouden zwavel en (het Latijnse) sulfur (sulphurium: "de steen die brandt") van hetzelfde woord afstammen, evenals ons woord suf. 'Suf' zou wijzen op de bedwelmende werking van zwaveldampen.
Men schat dat circa 0,05% van het gewicht van de aardkorst uit zwavel bestaat. Bij verbranding van steenkool, petroleum, dieselolie en andere fossiele brandstoffen komt zwavel vrij. Het daalt in de vorm van zure regen of stofdeeltjes weer op de grond neer. Het komt in een aantal belangrijke plantaardige weefsels voor, zoals in zaden en in het celvocht. Verder vervult zwavel in de vorm van sulfaat, een belangrijke rol in de waterhuishouding van planten, maar ook in de grond.

Zwavel is daarnaast een vitale en essentiële substantie dat in elk levend organisme aanwezig is. 96% van onze organen bevat vijf fundamentele elementen: zuurstof, waterstof, stikstof, koolstof en zwavel.

Zwavel bevindt zich in het organisme als een wezenlijk bestanddeel van 2 aminozuren en is hiermee een bestanddeel van de meeste eiwitsoorten. Zwavel is essentieel voor de structuur van bindweefsel (huid) en kraakbeen; het verzorgt de disulfidebruggen die voor structuur en elasticiteit zorgen. Bij tekorten worden de weefsels minder flexibel met als gevolg: verstijving van spieren, vermindering van de stootkussenfunctie van kraakbeen, vorming van rimpels in de huid en afname van elasticiteit van het longweefsel, hart- en bloedvaten. Zwavelbruggen zijn ook bepalend voor de doorlaatbaarheid van het ceilmembraan. Zwart organisme kan een flexibel membraan en een goede werking van de transportwetten. Bij een slecht doorlatende membraan kunnen onvoldoende voedingsstoffen de cel in en kunnen afvalstoffen niet goed afgevoerd worden, er is dan maar het ware te weinig ruimte voor. Ook is zwavel essentieel bij vele ontgiftingsprocessen in het lichaam.


Plaats in de behandeling

Sulphur is net als Silicea een mineraal middel en kan daardoor erg diep werken. Sulphur is Hahnemanns belangrijkste psoramiddel.

Sulphur is nodig om leven te maken; de zwavel verbrandingsprocessen zijn nodig om vanuit het onstoffelijke tot het stoffelijke te komen. Sulphur stuurt rechtstreeks de Dynamis aan.

Sulphur kun je daarom zien als de verbindingspoort tussen de Dynamis en het stofflichaam. Door Sulphur ontstaat er een mogelijkheid tot verbinding van de Dynamis met eiwitprocessen; in de nieren vindt het proces plaats waarbij lichaamsverlies eiwitten om worden gezet tot lichaamseigen eiwitten, waardoor er groei, bouw en herstel van het stoffelijk lichaam kan plaatsvinden. Dit proces wordt gerepresenteerd door Sulphur. De typische zwavelgeur heeft te maken met eiwitten die niet goed zijn omgezet.

Sulphur werkt ook speciaal op processen waarbij het ziekteproces van buiten naar binnen is gegaan. En daardoor werkt het op herstelprocessen waarbij ziekte onderdrukt is. Denk bijvoorbeeld aan het gebruik van antibiotica en prednison wat veelvuldig wordt ingezet bij klachten (na vaccinatie). In zo'n geval creëert Sulphur ruimte, waardoor de Dynamis weer de ruimte krijgt om op andere middelen te reageren. Maar ook de vaccinatie zelf kan onderdrukkend werken.

Sulphur zal daarom bij klachten na vaccinatie vaak niet direct op het acute beeld van de klachten worden voorgeschreven maar meer worden ingezet als anti-psorisch middel, met name in geval van onderdrukking (iatrogene belasting).
Repertrisatie


Vaccinations - HYPERSENSITIVE, after - drugs, to allopathic accon. arn. Ars. carc. cham. coff. lyc. MED. NIT-AC. nux-v. PULS. sep. sil. SULPH.


SULPH. THUJI. tub. VAC. Vario.


Vaccinations - SCABBY, eruption, after vaccination SULPH.

Vaccinations - ECZEMA, after Ammc. bac. kali-m. maland. mez. Rhus-t. skook. sulph. vac. vario.

Vaccinations - PUSTULES, vaccination, after - head, on sulph.

Vaccinations - RASH, after vaccination ant-t. apis sulph.


<table>
<thead>
<tr>
<th>1</th>
<th>1234</th>
<th>1</th>
<th>Constitutions - REACTION, lack of</th>
<th>84</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1234</td>
<td>1</td>
<td>Vaccinations - HYPERSENSITIVE, after - drugs, to allopathic</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>1234</td>
<td>1</td>
<td>GENERALS - VACCINATION, after</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>1234</td>
<td>1</td>
<td>Vaccinations - ALLERGIC, reactions - hives, and swelling, with</td>
<td>29</td>
</tr>
<tr>
<td>5</td>
<td>1234</td>
<td>1</td>
<td>Vaccinations - PERTUSSIS, vaccination, ailments from</td>
<td>46</td>
</tr>
<tr>
<td>6</td>
<td>1234</td>
<td>1</td>
<td>Vaccinations - SCABBY, eruption, after vaccination</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>1234</td>
<td>1</td>
<td>Vaccinations - ECZEMA, after</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>1234</td>
<td>1</td>
<td>Vaccinations - PUSTULES, vaccination, after - head, on</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>1234</td>
<td>1</td>
<td>Vaccinations - RASH, after vaccination</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>1234</td>
<td>1</td>
<td>Toxicity - DRUGS, general - allopathic, drugs, side effects from</td>
<td>21</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>sulph.</th>
<th>ars.</th>
<th>acon.</th>
<th>puls.</th>
<th>nit-ac.</th>
<th>merc.</th>
<th>phos.</th>
<th>sil.</th>
<th>ant-t.</th>
<th>mez.</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/4</td>
<td>6/13</td>
<td>5/9</td>
<td>4/10</td>
<td>4/9</td>
<td>4/8</td>
<td>4/8</td>
<td>4/7</td>
<td>4/7</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Thuja occidentalis (Westerse levensboom)

Ook wel levensboom genoemd, is een groenblijvende conifeer uit de cipressenfamilie. Het hout van Thuja heeft bij verbranding een sterk aromatische geur en werd daarom veel bij offerrituelen gebruikt waar Thuja ook zijn botanische naam aan te danken heeft. Thuja betekent namelijk in het Grieks ‘beroken’ wat voor offeren staat. Occidentalis verwijst naar de plaats van afkomst en betekent ‘uit het westen’. Van oudsher staat de boom symbool voor de verbinding tussen hemel en aarde, deze symboliek vinden we terug in het feit dat de boom vaak op kerkhoven wordt geplant. Het groen blijven symboliseert de onsterfelijkheid van de ziel. In oude legendes wordt Thuja ‘de waker van de dode’ genoemd.

Het is een boom die zeer oud kan worden en ook in de moeilijkste omstandigheden kan overleven. Het hout van Thuja is goed bestand tegen rotting, maar niet tegen vuur. Thuja wordt veel als haag toegepast, met zijn groenblijvende bladeren verhult hij zijn stam en verbergt ons voor de buren. Thuja zal daarom zijn persoonlijkheid niet snel blootgeven en zich vaak anders voor doen dan hij zich in werkelijkheid voelt. De stam van de levensboom is onbuigzaam, Thuja wordt gekarakteriseerd door emotionele inflexibiliteit, kan slecht tegen veranderingen, kan boos en zelfs gedesoriënteerd raken als zijn vaste gewoontes veranderd worden. De ziekteverschijnselen van Thuja komen overeen met de door Hahnemann beschreven sycosis wat Thuja een anti-sycotisch middel maakt. De bekendste ongepotentierteerde (lokale) toepassing is die tegen wratten.

Uit de verse bladeren, twijgjes en schors van Thuja wordt een etherische olie gewonnen. De werkzame bestanddelen van deze olie bestaan hoofdzakelijk uit terpeen en thujon (85% α-thujon en 15% van het meer giftige β-thujon). Andere bestanddelen zijn lignaan, flavonoiden zoals quercetine, kaempfer glycosiden en myricetine, ongeveer 1,3% looizuur en 4% thujapolysaccharides en eiwitten. Thujapolysaccharides bezitten antivirale eigenschappen, ze verbeteren de groei van T-cellen en de toename van cytokine 2 afgifte (distributie). Onderzoek heeft aangetoond dat α-thujon het chloorkanaal van de GABA-receptor blokkeert en zo de activiteit van de zenuwcellen verhoogt, het goede nieuws is dat α-thujon het korte termijngeheugen verbetert, de groei remt van diverse bacteriën en de lever beschermt tegen schadelijke metaboliën. Thujon komt van nature in veel plantensoorten voor. Het homeopathische middel wordt van de twijgen en bladgroen gemaakt.

Op fysiek/functioneel niveau werkt Thuja op heel veel vlakken; van hoofdpijn, gewrichtspijnen, oor- en luchtweginfecties, spijsverteringsklachten, slapeloosheid en andere storingen aan het zenuwstelsel, tandbederf, huiduitslagen met schimmelachtige gezwellen en uitwassen, aandoeningen van de urinewegen en voortplantingsorganen. Hahnemann werd op het spoor van Thuja gezet toen een jonge man een acute urinewegontsteking kreeg nadat hij op een takje van de levensboom had gekauwd.

Cathrine R. Coulter (Psychologische Portretten deel 3 (blz. 117)) meldt het volgende over de relatie tussen vaccineren en Thuja: "De injectie van een ‘vreemd’ antigeen in de bloedbaan van dit gevoelige en neurologisch uitermate kwetsbaar individu verbreekt zijn toch al zo zwakke verbinding met de werkelijkheid en drijft hem naar een andere psychische werkelijkheid. Zoals Moskowitz schrijft; vaccinatie genereert ‘een toestand waarin het moeilijk of zelfs onmogelijk wordt voor het lichaam de eigen cellen duidelijk te herkennen als die van hemzelf of parasieten als onmiskenbaar vreemd te elimineren (The case against Immunizations door Richard Moskowitz).’"

Op blz. 120 in dat zelfde boek schrijft Coulter: "Maar het krachtige effect van Thuja en Medorrhinum op door vaccinatie aangetaste mensen pleit voor een verbinding tussen het sycotische miasma en de gevoeligheid (door inenting) voor verzwakte
banden met de alledaags realiteit.”
C. von Boenninghausen, een van Hahnemann’s eerste studenten, ontdekte dat wanneer er pokken bij mensen heerste er onder paarden in die omgeving Malanders voorkwam, dit betreft tegenwoordig een korsterige huidziekte aan de achterzijde van de voorknie, maar we weten niet zeker of dat in de tijd van Von Boenninghausen ook het geval was, volgens een oud Engelse vertaling zou met Malanders een blaar of zweer in de nek worden bedoeld.
Aangezien Thuja de aangewezen remedie voor Malanders was besloot hij Thuja ook in te gaan zetten bij patiënten die leden aan pokken, dit bleek zeer effectief en later is hij nog een stap verder gegaan door aan de familieleden van pokkenpatiënten Thuja als preventief middel te geven. Op het eventueel preventief inzetten van homeopathische middelen komen we later terug.

Plaats in de behandeling
Thuja kan zowel op beeld als op aanleiding (vaccinatie) worden ingezet, of als middel op het sycotisch miasma. Er moet bij de laatste twee genoemde ook sprake zijn van een Thuja beeld.
De aanleiding (vaccinatie) kan ook sycotische klachten veroorzaken waarbij er niet direct sprake hoeft te zijn van een tendens; er kan ook sprake zijn van een eenmalige sycotische reactie.

Repertorisatie

Children - ASTHMA, children - vaccination, after ANT-T. Sil. THUJ.
Children - AUTISTIC, children - vaccinations, after carc. thuj.
Eyes - CONJUNCTIVITIS, infection - vaccination, after Thuj.
Eyes - INFLAMMATION, eyes - vaccination, after thuj.
Eyes - TUMORS, eyelids - meibomian, glands bad. kreos. lol. prot. STAPH. Thuj.
Feet - NAILS, toenails - inflammation, nails (felon, onychia, paronychia) - run-around - vaccination, after THUJ.
Legs - PARALYSIS, legs - vaccination, after Thuj.
Mind - ANXIETY, general - vaccination, after Thuj.
Sleep - RESTLESS, sleep - vaccination, after sil. Thuj.
Skin - ERUPTIONS, skin - vaccination, after crot-h. maland. mez. sars. skook. sulph. Thuj. vario.
Vaccinations - CONDYLOMATA, consists of a number of pointed, roundish, ulcerating edge Thuj.
Vaccinations - CONVULSIONS, vaccination, after ant-t. apis bell. Carc. Cic. SIL. Thuj.
Vaccinations - PARALYSIS, lower limbs, after vaccination Thuj.
Vaccinations - TUMORS, after vaccination Sil. thuj.
<table>
<thead>
<tr>
<th></th>
<th>thuj.</th>
<th>sil.</th>
<th>carc.</th>
<th>merc.</th>
<th>sulph.</th>
<th>staph.</th>
<th>ant-t.</th>
<th>ars.</th>
<th>iod.</th>
<th>med.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>1234</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2/3</td>
<td>2/3</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>1234</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2/4</td>
<td>2/3</td>
<td>2/3</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>1234</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2/5</td>
<td>2/3</td>
<td>2/3</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>1234</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2/5</td>
<td>2/3</td>
<td>2/3</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>1234</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2/5</td>
<td>2/3</td>
<td>2/3</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>1234</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2/5</td>
<td>2/3</td>
<td>2/3</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>1234</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2/5</td>
<td>2/3</td>
<td>2/3</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>1234</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2/5</td>
<td>2/3</td>
<td>2/3</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>1234</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2/5</td>
<td>2/3</td>
<td>2/3</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>1234</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2/5</td>
<td>2/3</td>
<td>2/3</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td>1234</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2/5</td>
<td>2/3</td>
<td>2/3</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td>1234</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2/5</td>
<td>2/3</td>
<td>2/3</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td>1234</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2/5</td>
<td>2/3</td>
<td>2/3</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td>1234</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2/5</td>
<td>2/3</td>
<td>2/3</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td>1234</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2/5</td>
<td>2/3</td>
<td>2/3</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td>1234</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2/5</td>
<td>2/3</td>
<td>2/3</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td>1234</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2/5</td>
<td>2/3</td>
<td>2/3</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td>1234</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2/5</td>
<td>2/3</td>
<td>2/3</td>
</tr>
</tbody>
</table>
CASUÏSTIEK

Zuid-Russische Ovcharka met onverwachte/onvoorspelbare agressie

Naam: Ezra ♂ (gecastreerd begin oktober 2011 d.m.v. implantaat (Suprelorin))
Geboren: april 2010
Start behandeling: 11-11-2011

Familiaire erfelijke belasting
Vanwege de sterke territoriumdrift en daaruit voorvloeiende aversie tegen vreemden (zowel honden als mensen) kunnen Zuid-Russische Ovchkars in Nederland amper loslopen. Ook bij bezoek moet de kennismaking op de juiste manier begeleid worden; nadat de eigenaar het bezoek geïntroduceerd heeft aan de honden kan het bezoek zonder problemen in en uit lopen.

Er komt epilepsie in het ras voor, een aandoening die in de casus een grote rol speelt; de vader van Ezra is een dag na de rabiësvaccinatie overleden tijdens een epilepsieaanval; hij had hiervoor nog nooit tekenen van epilepsie vertoond; dit betrof een 1e aanval waar hij niet uit te krijgen was. Een nestzuster van Ezra is op de leeftijd van 10 maanden overleden tijdens een epilepsieaanval; dit was haar 2e insult.

Ziektegeschiedenis, medicijngebruik en vaccinaties

- 28-05-2010: Pupvaccinatie hondenziekte en parvo
- 17-06-2010: Pupvaccinatie: lepto, parvo en KC
- 09-07-2010: Pupvaccinatie hondenziekte, HCC, parvo, leptospirosis en rabiës
- Bek gestoten tegen tafel op de leeftijd van 3 maanden oud; gevolg kruisgebit.
- Okt. 2010 beugel aangemeten; voor het plaatsen en bijstellen moet Ezra in een periode van 3 maand tijd 3x onder narcose.
- 04-07-2011: Hervaccinatie hondenziekte, HCC, parvo, leptospirosis en parainfluenza.
- Juli 2011: Op vakantie met campers met buitengedeelte met kennelpanelen (ong. 1 meter hoog) afgezet voor de honden. Vriend waar ze al dagen mee optrekken wil het kennelgedeelte in gaan en Ezra springt met voorpoten op de rand en bijt de man in zijn onderarm. Dat gaat op een gekke manier: hij bijt en trekt weer terug, hij bijt en trekt weer terug, alsof in trance ("hoorde en zag niets meer"). Reageert ook niet op de stem van de vriend die vriendelijk zegt: "hi Ezra it's me".
- Begin okt. 2011: Castratie implantaat Suprelorin.

De agressieklassen van Ezra hebben een duidelijke relatie met de vaccinaties. 3 maand na de laatste pupvaccinatie (inclusief rabiës) verontost Ezra de 1e tekenen van de onverwachte agressie en begint hij tijdens het wandelen te reageren op prikkels in de omgeving.

Na de herhalingsvaccinatie in juli 2011 volgt kort daarop een 2e bijtincident.
**Leefomstandigheden**
Leeft met 2 vrouwelijke rasgenoten (waaronder zijn moeder) bij eigenaar in huis waar ze (zo veel mogelijk) vrije toegang hebben tot de grote en afgezette tuin.

**Voeding**
BARF, in vakanties compleet versvlees voer (diepvries).
Beloning: Henne zalmsnacks en ‘trainertjes’ (geperst in botvorm).

**Actuele anamnese**

**Constitutie**

*Psyche:* Vriendelijk. Aanhankelijk. Eist aandacht actief op (drukt zijn kop onder je arm e.d.).

Onvolwassen ("alsof hij 6 maanden oud is"); gedrag en leeftijd komen niet overeen. Plast nog als pup (van de 10 keer telt hij misschien 1x zijn poot op), markeert niet/nauwelijks (plast in 1x leeg). Kauwt overal op (tafelpoten, plinten), het meest tussen 7-8 u. ‘s morgens [obs. opvallend is dat je geen echte tandafdrukken ziet, maar meer rafels]. Droomt veel (meer dan de andere honden). Waaks maar verder niet erg vocaal. "Agressief, omdat hij niet te voorspellen is”. Nieuwe hond in cursusgroep maakt hem wel extra alert, zeker als het een reu betreft, maar hij is dan nog goed te bereiken en te controleren.


**Modaliteiten:**

"Kou en schaduw hond”.
<< Warme ("dan zitten ze hun tijd uit").

**Actuele klacht**

**Buiten tijdens wandeling** (voor de beeldvorming zijn de agressie klachten gesplitst, maar ze komen in wezen uit dezelfde koker: er gaat iets mis bij de prikkelbeheersing)

*Klacht:* mentaal/emotioneel

*Aanleiding:* Constitutioneel en vaccinatie

*Lokaliteit:* Psyche

*Gewaarwording:* Op show, cursus of in de stad niets aan de hand; zodra hij echter tijdens een wandeling 1 hond, mens of auto spot (ook heel in de verte): "gaat hij helemaal door het lint".

Opwinding stijgt snel: "van 0-100 in 1 sec., alsof er een knop omgaat": fixeren; achteruit in de lijn trekken om zich uit zijn halsband te wurmen; blaffen, grommen, gillen, krijsen; "hysterisch, alsof hij van de wereld is”; om zich heen happen (niet gericht); springt met 4 poten van de grond; is dan niet te houden en onbereikbaar: straffen, belonen het maakt niet uit, hij is er niet uit te krijgen. Op bekend terrein is dit gedrag heftiger. Anticipeert. Bij ingrijpen/tegenhouden redirectiegadrag (wild om zich heen happen). Bij 1 gelegenheid ontsnapt hij uit zijn halsband en rent naar de naderende auto; auto stopt; Ezra loopt om de auto heen (rustig) en snuffelt wat; eigenaar kan hem daarna aanlijnen en rustig meenemen. Geen prikkelbeheersing.

*Modaliteiten:*
<br><br>&lt;&lt; bij het zien van een enkele mens, hond of auto tijdens wandeling (bij wandeling in stad of show reageert hij nergens op).
<br>&lt;&lt; Tegenhouden of correcties (wordt dan alleen maar hysterischer).

**(Bijna) bijnicaident**

*Aanleiding:* vaccinatie

*Lokaliteit:* Psyche

*Gewaarwording:* Plotselinge agressie tegenover logees die al enige dagen in huis zijn. Alle 3 de voorvallen betrof het een man, kan toeval zijn. "Uit het niets”, geen zichtbare aanleiding. 1° keer schrok hij van zichzelf nadat hij in de broek van logee gebeten had. Bijten (juli 2011) betreft niet 1 beet, maar meerdere snelle beten achter elkaar met na elke beet even terugtrekken. Sedig is onvoorspelbaar; "hij is daarin niet te lezen". Bij ingrijpen eigenaren redirectiegadrag (wild om zich heen happen).
Modaliteiten:
Agressie begint pas na een paar dagen (Alsof het dan teveel wordt? De stress bouwt zich op?).
<< Mannen?
<< Tegenhouden of correcties (wordt dan alleen maar hyste-risch).

**Differentiatie, motivatie en middelkeuze**
*Constitutie.*
Ezra zou je kunnen omschrijven als een grote jongen met zijn korte broek nog aan. Hij lijkt wel een grote knul, maar gedraagt zich nog als een kleuter en daarnaast heeft hij ook nog eens een soort van puppyvacht. Maar zijn agressie moeten we niet onderschatten, op die momenten is hij in feite levensgevaarlijk. Gezien zijn bouw en gedragingen (lange hond, grenzeloos, heftig, plotseling, wil oefeningen niet vaak herhalen) heeft Ezra een Phos constitutie. Er kan echter nog niet constitutioneel worden voorgeschreven, Ezra verkeert nog veel te veel in de 112-staat van zijn (gedrag kan elk moment getriggerd worden).

De agressie zelf is een AM-klacht, de reden dat die agressie kan ontstaan ligt op verschillende vlakken: de erfelijke aanleg, waarbij er sprake is van zowel het rastypische (extreme) waakhondenkarakter als de gevoeligheid (epilepsie vader en zus) en de constitutionele gevoeligheid met de vaccinatie daar nog eens overheen (iatrogeen). Dus al deze gebieden moeten een plek in de behandeling krijgen.

**Acuut-miasmatisch.**
De incidenten in huis met de logees hebben te maken met het feit dat er zich tijdens hun verblijf prikkels opbouwen. Zoals het zijn ras betaamt wil hij die indringer liever niet in huis (hoort niet bij de roedel), maar accepteert hem wel vanwege zijn eigenaren, die zeggen immers dat het goed is. Dat hij geen indringers in huis tolereert is overigens niet helemaal waar, bezoekers worden vriendelijk begroet wanneer zij al in een ruimte in huis zijn en Ezra daarna wordt opgehaald (dat geldt overigens voor alle honden van de eigenaar).

Het gaat bij Ezra fout als het bezoek langer dan 3 dagen blijft en vrij in en uit loopt. De spanning bouwt zich dan bij hem op en ontlaadt zich plotseling. Bij het laatste incident is zijn manier van bijten opvallend: hij bijt in een soort van staccato tempo en na elke beet trekt hij weer even terug. We zien 2 AM-beelden bij Ezra:
- **AM (112):** Stram-beeld (Everybody is an enemy). Dit beeld laat hij niet doorlopend zien, maar is onder de oppervlakte wel altijd aanwezig: als de spanning te hoog oploopt, of de prikkels teveel zijn komt het Stram-beeld meteen naar boven.
- **AM:** Puls (vanwege jonge hond (1,5 jaar), gedrag niet in overeenstemming met leeftijd (te jong).

**Miasma.**
De uitingsvorm: de extreme agressie, het heftige door het lint gaan met daarnaast de in het ras voorkomende heftige vorm van epilepsie doet erg denken aan een syphilitische reactie. Gezien de erfelijke informatie van Ezra kun je hier wel spreken van een tendens/miasma. Voorschrijven op deze tendens gebeurt (nog) niet maar, zoals bij de erfelijke tendens te lezen is, wordt er wel een nosode ingezet die gerelateerd is aan het syphilitische miasma.

**Erfelijke tendens.**
Zijn grote gevoeligheid (prikkels komen diep binnen) wijst op een carcinogene tendens. Al zou hier twijfel over kunnen ontstaan vanwege het feit dat Ezra niet te straffen is wanneer hij door het lint gaat (wat typisch tuberculinisch is), maar dat is alleen het geval op die (Stram) momenten, op andere momenten reageert hij wel op een correctie, dus het is niet zijn basishouding om niet op correcties te reageren. Daarnaast heeft Carc (net als Phos) een relatie met het syphilitische en is zijn reactie op de vaccinaties (en waarschijnlijk ook de narcose - het (mogelijke) incident waardoor hij niet meer in de hondenkamer wil is voorgevallen na een narcose - (extra gevoelig)) wat er op wijst dat prikkels te diep binnen komen.

**Iatrogeen.**
De aanleiding tot de heftige en plotselinge agressieklachten is iatrogeen, dit beeld is door de vaccinatie opgeroepen, Ezra laat een rabiësachtige waanzin zien als hij zich in een 112-situatie
bevindt. Zowel Carc als Stram ‘scoren’ hoog in de repertorisatie op het iatrogene bloemblad, dus is het nu niet noodzakelijk om nog een extra middel speciaal op het iatrogene in te zetten omdat dit deel ook al door Stram en Carc wordt gedekt.

Degeneratief Stoffelijk Functioneel.
Bij Ezra lijkt er in de hersenen iets mis te gaan bij de prikkeloverdracht. Hij springt letterlijk met alle 4 zijn poten van de grond als hij iets in de verte ziet en is totaal niet meer geaard. Aangezien het hier om een heftige en gevaarlijke situatie gaat, meteen voorschrijven met Schüssler celzouten. Aangezien het even duurt voordat deze zouten ‘aanslaan’ blijft er goed zicht op zijn reactie op de andere middelen. Zincum-m voor de uitputting van het hersenweefsel, Magn-ph en Kali-ph op de prikkeloverdracht.

Geneesmiddelvoorschrift
Carc, Puls, Stram en de Schüssler celzouten Magn-ph, Kali-ph en Zinc-m

Vervolg
Ezra reageert heel snel op de middelen. Binnen een paar dagen merkt de eigenaar al dat hij een stuk beter te bereiken is in situaties die voorheen enorme stress opleverden en deze >> zet zich door. Na een week of 4 vinden de eigenaren Ezra al zo ver opgeknapt dat ze tevreden zouden zijn als dat het eindresultaat zou blijken te zijn. Hij is nog steeds erg prikkelgevoelig, maar is daar wel redelijk makkelijk uit te halen en ook in huis is hij veel rustiger.

Rottweiler met auto-immuun gemedieerde poliartritis
Naam: Lara ♀
Geboren: november 2004
Start behandeling: 12-06-2010

Ziektegeschiedenis, medicijngebruik en vaccinaties
• Gescheurde kruisband; linksachter tijdens spel met andere hond (aug 2007). Geopereerd. Narcose, AB en pijnstillers (NSAID).
• Oorontsteking; Lara heeft in de periode 2007-2010 ± 8x last gehad van haar oren; ontstoken, stinkend, warm, krabt eraan. Medicatie: Surolan.
• Bultjes rondom vulva; In de periode 2008-2010 heeft Lara vele kleine bultjes rond haar vulva die goed te voelen, maar lastiger te zien zijn. Medicatie: Dermapetcreme.
• Likken voorpoten; Gedurende 2006-2010 likt Lara veel aan haar voorpoten; op de likplekken wordt Dermapet huidcreme gesmeerd.
• Sloom na Frontline-anti-tekenpipet; dit duurt altijd een paar dagen.
• Acute zwelling rondom vaccinatieplaats; die lang aanhoudt na iedere vaccinatie.
• Dracht/bevalling; 1e nest; 9 pups in november 2008, 5 pups via normale route, 4 via keizersnede. Medicatie: Narcose, AB, pijnstillers (NSAID).
• Anafylactische reactie op AB (melkklierontsteking); snelle zwelling van de kop en nek, intense jeuk, benauwd.
• Auto-immuun gemedieerde poliartritis; deze diagnose wordt in mei 2010 gesteld. Medicatie: AB-kuren (2x; sloegen niet aan) en pijnstillers (NSAID). Ook krijgt ze een roesje vanwege onderzoek naar opgezwollen tong.
• Medicatie; Lara heeft meerdere malen AB gehad, pijnstillers (NSAID). Daarnaast de oordruppels (Surolan) en huidcreme (Dermapetcreme) en vermoedelijk een antihistamine injectie.
Ontworming/anti-teken; ontwormingen volgens schema fabrikant (± 4x per jaar).
Vaccinaties; jaarlijks (cocktailenting). Voor het laatst gevaccineerd op 31 maart 2010.

Uit bovenstaand overzicht blijkt dat er sprake is van een langdurige geschiedenis van onderdrukking van klachten. De anafylactische reactie op de antibiotica-injectie in januari 2010 laat de grote gevoeligheid van deze hond zien. Deze gevoeligheid toont zich ook na elke vaccinatie, wanneer een zwelling optreedt op de injectieplaats en het feit dat Lara een paar dagen sloom is na het toedienen van een anti-tekenpipet.

Lara is in de eerste maanden van 2010 een aantal keren achter elkaar behandeld met AB, prednison, wellicht ook Surolan en Dermapetcreme, gevolgd door de jaarlijkse vaccinatie in maart. Deze iatrogene belasting in combinatie met de hoge gevoeligheid van Lara heeft haar Dynamis zo zwaar belast (haar systeem zo onder druk gezet) dat zich een syphilitische reactie heeft openbaren; de auto-immuun gemedieerde poliartritis in mei 2010.

**Voeding**
Lara krijgt Carnibest en BARF.

---

**Actuele anamnese**
**Totaal symptoom auto-immuun gemedieerde poliartritis**
Aanleiding: Endogeen (constitutioneel) i.c.m. iatrogene belasting

Lokalisatie: Gewrichten en psyche


Ze heeft behoefte aan rust. De andere honden in huis snauwt ze af als die te dicht in haar buurt komen. Ze vindt het wel fijn geaaid te worden door haar baasjes.

Modaliteiten: Zonder de huidige reguliere geneesmiddelen: iedere beweging <<. Echter, nu is er regulier al prednisolon voorgeschreven en laat zich het beeld zien van beginnende beweging <<, voortgezette beweging >.

**Differentiatie, motivatie en middelkeuze**
Acuut-miasmatisch.
Dit is de reden van komst; de AM-locomotieklacht; hier op voorschrijven.

Syphilitisch miasma.
Een auto-immuun ziekte is een ziekte waarbij het lichaam zichzelf aanvalt; dit is een syphilitisch beeld, evenals de anafylactische reactie op de AB. Daarom kun je stellen dat deze syphilitische tendens in Lara aanwezig is en is het daarom belangrijk om hierop voor te schrijven.

Iatrogene.
Deze syphilitische tendens heeft zich kunnen uiten door een toenemende mate van psora, veroorzaakt door de (in 2010 kort op elkaar volgende) iatrogene belasting. En in de jaren daarvoor is de druk in de pan steeds meer opgevoerd door de vaccinaties en andere medicatie. Het leek wel alsof ze na elke vaccinatie en toediening van Frontline pipetten herstelde, maar in werkelijkheid herstelde de Dynamis zich nooit meer volledig (=psora) en bouwde de druk zich op. Vanwege deze grote mate van psora is het belangrijk om ook hierop voor te schrijven.

Organen.
De lever speelt een belangrijke rol bij stofwisselingsprocessen en wanneer deze processen te vochtig zijn, kunnen zich klachten voordoen als artritis. Omdat de lever een rol speelt in het totstandkomen en het onderhouden van de klacht, dient deze te worden meegenomen in de behandeling.
Degeneratief Stoffelijk Functioneel.
Omdat er bij Lara vanwege de auto-immuun gemedieerde poliartritis sprake is van demineralisatie op weefsniveau, moeten de tekorten die ontstaan zijn, aangevuld worden. Daarvoor worden Schüßler celzouten ingezet.

Geneesmiddelvoorschrift
Carbo-v, Syph, Rhus-t en celzouten Nat-s, Sil en Calc-fl (2x daags), Carduus Ø (1x daags).

Vervolg
Lara verslechtert op het door de internist voorgeschreven afbouwschema van de prednison. Het is voor de homeopathische behandeling belangrijk dat een dergelijke afbouw in een heel langzaam tempo gaat zodat er zich geen verslechtering kunnen voordoen zoals bij Lara nu het geval is; doen deze verslechtering zich vaak voor, dan bestaat namelijk het risico dat de homeopathische middelen deze schommelingen niet goed meer kunnen opvangen waardoor de kans op een nog grotere terugval bestaat. In de praktijk blijkt dat ook een kwart tabletje prednison nog voldoende invloed heeft op het dier, ook al wordt er reguier gezegd dat een dergelijke minimale hoeveelheid niet kan werken.

De internist is van mening dat Lara tot de 50% van de honden behoort die niet voldoende reageren op de prednison. Doorgaans met dit middel kan ook niet te lang meer, daarom is besloten dat ze vanaf eind augustus gaat starten met Imuran tabletten.

Daarnaast adviseert de internist om Lara nadat ze met de Imuran is gestopt, weer volledig te laten vaccineren. Volgens de internist is door de prednison en de Imuran alles wat er aan weerstand was opgebouwd teniet gedaan en moet Lara nu opnieuw beschermd worden.

Echter, volgens dierenarts Tannetje Koning is er gevaccineerd toen er nog voldoende weerstand was (maart 2010). In mei 2010 is Lara acuut geworden en is de prednison en later de Imuran ingezet. De prednison en Imuran bouwen geen weerstand af; het dier bouwt in die periode niets op, maar zou op hetzelfde niveau moeten zitten als in maart 2010. De eigenaresse besluit op basis hiervan niet tot vaccineren over te gaan.

In december 2010 begint Lara weer obsessief te likken aan haar voorpoten; dit heeft ze gedurende een periode van 4 jaar gedaan, waarvoor altijd Dermapet huidcreme werd gebruikt. Het likken is wegebleven tijdens het acute ziektebeeld van de poliartritis. Dit is te verklaren doordat de prednison alles onderdrukt, maar ook omdat ze destijds zo erg ziek was, dat het mindbeeld (het obsessieve likken) niet meer toegedraaid werd; de Dynamis zat alleen op de stoel van de poliartritis. De prednison heeft nog meer onderdrukt; haar loopsheid bleef uit van november 2009 tot ± medio december 2010. Lara is sinds mei 2011 geheel vrij van reguliere medicatie.

Eenmaal van de prednison en Imuran af en nadat was gebleken dat ze niet << na deze medicijnstop, is Carc als nosode ingezet.

De constitutie van Lara
Bouw: Compact, rasspecifiek; neigt naar onderlijn van middenslag. Ze heeft het lange-haar DNA in zich. Ze wordt voor een Rottweiler teef vaak “chique” genoemd vanwege haar mooie slanke hoofd. Haar poten zijn goed in proportie vergeleken met haar lijf; niet te lang, niet te kort.

Mentaal: Ze is erg open, erg nieuwsgierig. Terughoudend naar andere honden, beschermend voor het gezin. Ze is heel actief. Prefereert kou. In de zomer past ze haar tempo aan (is dan wat trager). Haar favoriete houding is op haar zij of languit op haar rug met vier poten de lucht in. Ze eet alles eigenlijk graag, behalve bananen en komkommer; daar houdt ze niet van. Appel en peer daarentegen weer wel. Ze is gek op kaas (jonge kaas) maar krijgt dit niet zo vaak.
Ze is heel slim. Ze leert erg snel. Ze vindt iedereen leuk, maar heeft een voorkeur voor mannen. Ze reageert niet op geluiden (behalve dan: leuk, wat valt er te doen?). Ze is geneigd zich sterker voor te doen dan ze is, althans ze zal zich minder snel uiten en heeft een sterke “will to please”.

Qua bouw neigt ze meer naar Calc-c met wat elementen van Calc-ph in zich: de Phos is terug te zien in het lange haar, de fijne, chique, toet.

De typische werkeigenschappen overheersen het beeld en mede gelet op haar gevoeligheid voor vaccinaties en ook als we kijken naar hoe de klacht zich heeft geuit (auto-immune poliartritis) dan zie je daar een Sil-constitutie in terug (auto-immuun niveau en ontstkingen).

Zelfs als Lara Calc-c of Phos constitutioneel zou zijn dan is Sil nog steeds een goede keus omdat je met dat middel het auto immuun niveau bereikt en dus op dat moment met een mineraal middel zowel op beeld als anti-psorisch voorschrijft.

Helemaal afbouwen van de middelen is geen optie in deze casus vanwege de aanwezigheid van de syphilitische tendens; zou je hier niet op blijven voorschrijven dan bestaat de kans dat de druk in de pan weer oploopt en het risico groot is dat bij het openbaren van klachten deze weer heel heftig en destructief zullen verlopen. Lara wordt daarom op een onderhoudsdosis gezet van Syph, Carc en Sil. Syph en Carc werken voorwaardenscheppend voor Sil en omdat Lara een zo sterke predispositie heeft voor auto-immuunklachten, is het goed om deze middelen 1 x per week te blijven toedienen om zo de Dynamis geprikkeld te houden en ervoor te zorgen dat de druk in de pan zo laag mogelijk blijft.

Nova Scotia Duck Tolling Retriever met angstklachten en hyperactiviteit

Naam: Pako ♂
Geboren: 06-05-2011
Start behandeling: 22-10-2011

Familiaire erfelijke belasting
Bij de Toller komen diverse erfelijke afwijkingen voor: auto-immuunziektes, epilepsie, MDR1 gendefect, prcd-PRA, CEA, Dilute gen, Degeneratieve Myelopathie, ziekte van Addison.
Verder zijn Tollers gevoelige honden (familie van de Golden Retriever en misschien ook wel Border Collie en Labrador).

Biografie, ziektegeschiedenis, medicijngebruik en vaccinaties
• 06-05-2011: Geboortedatum
• 27-06-2011: Pupenting hondenziekte en parvo
• 30-06-2011: Verhuist naar huidige eigenaren. Na thuiskomst overgeven en diarree, duur 1 dag.
• Als jonge pup heel erg bijterig, niet bereikbaar.
• 10-08-2011: Vaccinatie weil en parvo
• 29-09-2011: Zwelling ter grootte van een half kippenei op de vaccinatieplaats.
• 08-10-2011: Begint ineens overal van te schrikken.

Pako is in het nest een redelijke doorsnee pup, hij is wel de kleinste van de 9 stuks, maar is qua gedrag vergelijkbaar met de rest: niet opvallend druk of bijterig. Vanaf het moment dat hij bij de eigenaren is, verandert hij in een piranha, is dan niet te bereiken of te stoppen; bijt overal in, in handen, kleding e.d. Dit soort ‘hyper’ gedrag wordt veel gezien na de pupenting, al spelen omgevingsfactoren (hoe de eigenaren hier op reageren) ook een rol. Je ziet dat de dieren veel
prikkelgevoeliger zijn dan normaal, veel heftiger reageren op de prikkels en moeilijk bereikbaar zijn wanneer ze in dat gedrag zitten.

Dan volgt de vaccinatie in augustus, daar lijkt hij ogenschijnlijk niet op te reageren. Maar de reactie wordt 7 weken na de vaccinatie duidelijk wanneer hij een roesje krijgt omdat er een extra tand getrokken moet worden; pas dan komt de zwelling van de vaccinatie naar boven. De Dynamis was al die tijd dus niet of onvoldoende in staat om te reageren op of om de gevolgen van de vaccinatie op te ruimen. Het roesje was de druppel die de pan deed overlopen; 7 dagen later worden de fysieke klachten pas zichtbaar en nog eens 2 weken later de mentale klachten.

Voeding
Brok en een compleet versvlees voer (diepvries) 50/50.

**Actuele Anamnese**

**Aanleiding:** Constitutioneel

**Lokaliteit:** Psyche


**Modaliteiten:** (Eigenaren vinden dit moeilijk te beantwoorden, hij is nog zo jong, dus al zijn voor- en afkeuren kennen ze nog niet.) Geen echte regenhond. Waarschijnlijk heeft hij een voorkeur voor koele plekken.

**Lokaliteit:** Uiterlijk/bouw


**Actuele klacht**

**Aanleiding:** Constitutioneel en vaccinatie (wat zich pas openbaart na het trekken van de extra tand)

**Lokaliteit:** Psyche

**Gewaarwording:** Sinds 8 oktober ‘oud’ gedrag weer terug: "Verstarren bij bepaalde beelden of geluiden" (zoals graffiti muur, koeien in de wei, schapen in de wei, gekke (harde) geluiden, koplampen van auto’s), staart gaat dan naar buik; niet (ver) van huis/auto willen: schrap zetten en achterom kijken; bekende dingen zijn ineens eng: verstart (vlucht (nog) niet), is daar niet uit te halen: spuugt dan lekkertjes uit, herstelt zich na 5-10 minuten (wanneer hij gelegenheid krijgt om te kijken). Angst/schrik is wisselend (niet altijd en niet altijd in dezelfde mate). Ziet veel (opmerkzaam), maar loopt niet te scanner. Begint poot op te tillen (hormonen), maar markeert niet: plast 1 grote plas.

**Modaliteiten:** <= ‘s avonds.

**Aanleiding:** Constitutionele gevoeligheid en iatrogeen

**Lokaliteit:** Ogen

**Gewaarwording:** "Laatste tijd" dik geel/wit oogsnot uit binnen ooghoeken. Zowel links als rechts.

**Modaliteiten:** Onbekend
Differentiatie, motivatie en middelkeuze

Acuut-miasmatisch.
Pako is een heel jonge hond die normaal gesproken al erg gevoelig is en een gemis aan basisveiligheid laat zien (daarom schrikt hij ook zoveel en snel), daarnaast heeft hij de laatste tijd last van dik geel/wit oogsnot. Dit zijn allemaal redenen om AM voor te gaan schrijven.

Erfelijk.
Pako is een hond die van zichzelf al gevoelig is voor indrukken (constitutioneel), maar dit is ook sterk aanwezig in het ras, vandaar dat er op deze tendens moet worden voorgeschreven.

Iatrogeen.
Na het trekken van het extra tandje waarvoor hij onder narcose moet, blijkt dat Pako ineens weer overal bang voor wordt en openbaart zich een reactie op de vaccinatie van 1,5 maand daarvoor. Daarnaast krijgt hij ook nog eens last van zijn ogen (AM). Allemaal tekenen dat de Dynamis niet meer in staat is tot omkering van het ziekteproces. Dit proces is waarschijnlijk al bij de 1e vaccinatie in werking gezet; Pako was als jonge pup onzeker en schrikkelig. Op de 2e vaccinatie in augustus lijkt er geen reactie te komen, maar in de pan is het proces al wel in werking gezet. Daar komt dan de narcose in september overheen en wordt duidelijk dat de Dynamis nog helemaal niet klaar was met het opruimen van de gevolgen van vaccinatie. Het feit dat Pako zo op de vaccinaties en narcose reageert, geeft ook zijn gevoeligheid aan (erfelijk en constitutioneel). Omdat de klachten in feite met de vaccinatie zijn begonnen is dat de prima causa en daarom moet hier op worden voorgeschreven.

Constitutie.
De aanleiding van de klachten ligt bij de vaccinatie(s); de gevoeligheid voor vaccinaties is constitutioneel, en het AM beeld (prikkelgevoeligheid) heeft ook een sterke relatie met de constitutie dus daarom hier al meteen voorzichtig op gaan voorschrijven. Pako heeft een Sil constitutie: Extra tand, verstarren bij enge dingen, schrikt van vaste objecten en juist niet van vallende of waaiende bladjes (=Phos), klachten na vaccinaties.

Geneesmiddelvoorschrift
Sil 2x per week, Carc en Puls dagelijks.

Vervolg
Pako reageert heel goed op de ingezette behandeling. Na 2 weken is hij al iets minder bang buiten, al is dit beeld nog erg wisselend: de ene keer gaat het goed, de andere keer weer minder, maar de algemene tendens is dat hij dan al een behoorlijke >> laat zien. 3,5 maand na de start van de behandeling gaat Pako graag mee naar buiten, heeft geen enkele moeite met van huis te gaan en ook op onbekend terrein wandelt hij vrolijk mee. Hij is wel erg alert op dingen die afwijken, schrikt daar echter niet meer van, maar wil het afwijkende altijd wel graag wat uitgebreider bekijken. Van angstklachten is geen sprake meer.
Schotse Collie korthaar met neurologische klachten die verslechteren na vaccinatie

Naam: Sara ♀ (gecastreerd op 29-10-2003)
Geboren: juni 2006
Start behandeling: 19-02-2011

Familiaire erfelijke belasting
De vader van Sara kreeg op latere leeftijd last van “tia’s” en is op 13-jarige leeftijd overleden aan een hersenbloeding.

Ziektegeschiedenis, mediciijngebruik en vaccinaties
• Droge ogen; onvoldoende traanproductie. Medicatie: Cavasan oogzalf.
• Recidiverende blaasontsteking. Medicatie: Cranberry capsules.
• Diarree, af en toe, éénmaal met bloed. Medicatie: meestal geen, 1x AB ingezet.
• Anaalklieren raken regelmatig overvuld. Medicatie: geen; eens in de 2 maanden leegdrukken.
• Trauma na aanrijding door auto. Medicatie: krammen, AB en pijnstilling.
• Achtervolgingswaan (schrilt regelmatig en kijkt om “alsof er iemand achter haar staat”), enkele weken na vaccinatie. Medicatie: geen.
• Vaccinaties: de eerste 5 jaar jaarlijks grote cocktail (hondenziekte, HCC, parvo, lepto, parainfluenza en bordetella) waarvan 1 maal in combinatie met rabiës, daarna cocktail om de 3 jaar, rabies om de 3 jaar en lepto jaarlijks. Vorig jaar en dit jaar was er sprake van << van de neurologische klachten na vaccinatie.
• Wormbestrijding: zelden.

Voeding
Sinds enkele jaren een compleet versvlees voer (diepvries).

Actuele anamnese
Sara komt onder behandeling omdat ze sinds 4 maanden last heeft van neurologische klachten vergelijkbaar met “tics/tia’s” (diagnose DA) waarvan de frequentie ineens omhoog is gegaan van om de 6 weken naar om de paar dagen.

Constitutie
Aanleiding: Endogene
Lokaliteit: Constitutie: mentaal/emotioneel

Lokaliteit: Constitutie: fysiek/functioneel
Modaliteiten: >> zon/warmte
**Actuele klacht**

Aanleiding: Endogeen

Lokaliteit: Neurologisch


Gezichtsspiegelen aan rechterkant verzwakt/verlamd: hangende lip en oog dieper in kas, oor dat naar binnen gedraaide. Head tilting (duizelig?), voorzichtig lopen, zet haar rechtervoorpoot/pols meer naar binnen.


<< Na vaccinatie (Hap/kauw bewegingen en steun zoeken)

**Lokaliteit: Psyche**


Modaliteiten: Onbekend

**Differentiatie, motivatie en middelkeuze**

Acuut-miasmatisch.

De reden van komst; de aanvallen/hersenbloedingen; hier op voorschrijven.

Erfelijke tendens.

De aanvallen hebben een erfelijke component (vader), verder is dit ras erg gevoelig voor indrukken van buitenaf, dus op dit gebied zal ook moeten worden voorgeschreven.

Acuut-miasmatisch chronisch.

Sara heeft een verleden van blaasontstekingen/zwakke blaa periods, korte diarree periods en regelmatig overvuilde analklieren; dit zijn in wezen geen acute klachten meer. Deze klachten zijn chronisch geworden en zijn ondertussen bijna onderdeel van de constitutie (AMC dus). Op de predispositie voor deze AMC-klachten zal moeten worden voorgeschreven om de druk in de pan te verlagen en ervoor te zorgen dat de Dynamis meer ruimte krijgt.

Constitutie.

Omdat het constitutiemiddel een relatie tot de klacht heeft (aanvallen/heresbloeding; gevoeligheid voor vaccinaties wat voortkomt vanuit de ‘transparantie’ van de Sil-constitutie) zal hier ook al voorzichtig op moeten worden voorgeschreven.

Iatrogeen.

Vaccinaties zijn in het verleden hoogstwaarschijnlijk vaker aanleiding geweest voor sommige van Sara’s klachten (zoals bijvoorbeeld de achtervolgingsswaan en soms ook diarree).

Deze (extra) gevoeligheid c.q. transparantie voor vaccinaties wordt in Sara’s geval geactiveerd vanuit een predispositie van de constitutie en doordat er op dat gebied al wordt voorgeschreven is het niet nodig ook nog eens apart op de iatrogene belasting voor te gaan schrijven.

**Geneesmiddelvoorschrift**

Carc en Puls dagelijks, Sil 2x per week. Bel en Cupr in geval van aanval.

**Vervolg**

Sara reageert heel goed op de ingezette behandeling, na 2 weken is ze al een stuk alerter en opgewekter en ligt ze een stuk stabieler dan voorheen; na een aantal maanden lijkt er een soort van vertraging op te treden; het omhoog gaan van potenties >> wel iets, maar niet voldoende, dus wordt de tijd voor een middel op de Psorische Indifferentie, Sara is dan ook net 11 geworden, je kunt merken dat de Dynamis net wat meer hulp nodig heeft. Carb-v wordt hierop ingezet.

Daar reageert ze goed op. Alle aanvallen die daarna voorvallen kunnen de eigenaren herleiden naar drukte; drukke logee, ontmoetingsdag verschillende korthaar kennels; dat verhoogt nu toch wel de stress en dan zien ze een aanval, ook na schrik (enorme donderknal) volgt een kort aanvalletje, maar
verder gaat het heel goed met Sara tot ze in feb. 2012 gevaccineerd wordt (Vanguard CPV-Lepto en DA2Pi (parvo, hondenziekte, HCC, lepto en kennelhoest). Een dag later krijgt ze last van meer ooguitscheiding (oogsnot) en 2 weken later nemen haar hapbewegingen toe, haar polsgewricht r.v. is dikker geworden en ze loopt wat mank. Verder slaapt ze meer, ze is ineens een stuk rustiger. Sulph wordt 2x per week naast de bestaande medicatie ingezet en na een week is ze al weer een heel stuk verbeterd.

Uit het bovenstaande verhaal van Sara blijkt hoe gevoelig zij is voor externe prikkels en dan in het bijzonder vaccinaties; Sara's reactie op de vaccinaties komt in wezen voort vanuit haar gevoelige constitutie en erfelijke predispositie (veel Collie-achtigen zijn overgevoelig voor bepaalde reguliere medicatie).

Blauwe Abessijn met chronische niesziekte
Naam : Arthur ♂ (gecastreerd op 01-03-2005)
Geboren : november 2003
Start behandeling : 17-11-2010

Ziektegeschiedenis, medicijngebruik en vaccinaties
• **Niesziekte;** Arthur heeft als kitten in de leeftijd tussen de 7 en 12 weken oud niesziekte gehad (zijn broertje en ook andere nesten bij de cattery waren ziek). Hoe dit bij de fokker is behandeld is niet bekend, maar hoogstwaarschijnlijk is daarvoor AB gebruikt. Hij is (desondanks) op de leeftijd van 12 weken gevaccineerd tegen kattenziekte en niesziekte.
• **Terugkerende niesziekteklachten;** vanaf komst bij eigenaar eind januari 2004 tot heden. Deze worden standaard behandeld met een breedspectrum AB en de laatste jaren daarnaast met een corticosteroïde. In 2010 is hij bijna het hele jaar aan het niezen, snuiven en is erg kortademig.
• **Diarree;** in zijn 1️⃣ 2 levensjaren heeft Arthur regelmatig last van diarree en blijft erg mager.
• **Huidklachten;** kale plekken en huidontsteking in 2005 en 2006.
• **Medicatie;** Arthur heeft op het moment dat hij in november 2010 in behandeling komt op 7-jarige leeftijd al een indrukwekkende lijst met medicatie opgebouwd; hij heeft 7 kuren Voreen suspensie (dexamethasonisonicotinaat, ontstekingsremmer), 12 kuren breedspectrum AB, 4 penicilline kuren, 3 NSAID injecties, 2 Prednoral kuren en 3x Dermapet huidcreme voorgeschreven gekregen. Daarnaast nog:
  o **Vaccinaties:** tot en met februari 2010 wordt hij jaarlijks gevaccineerd tegen niesziekte en kattenziekte.
  o **Ontworming:** jaarlijks tegelijkertijd met de vaccinatie.
Opvallend is dat hij in 2010 ondanks zwaar ademen toch door de DA gevaccineerd en ontwormd wordt én tegelijkertijd een AB injectie krijgt.

Leefomstandigheden
Arthur woont samen met 2 andere katten en een hond (zijn grote vriend die ongeveer gelijk met Arthur als pup bij de eigenaren is gekomen) in een ruim appartement met verschillende slaapplaatsen en grote krab-/klim-/verblijfpaal. De katten mogen niet naar buiten.

Voeding
Happy Cat brokjes en op vrijdag-, zaterdag- en zondagavond natvoer (blik/zakjes). Merk en smaken variëren, eigenaar let er altijd op dat er geen toegevoegde geur-, kleur- en smaakstoffen in zitten. 's Avonds een kattensnoepje.
In juni 2011 over gegaan op vers: Carnibest.
Actuele anamnese
Constitutie
Lokaliteit: Psyche
Modaliteiten: << in onbekende omgeving (paniek)

Lokaliteit: Uiterlijk

Actuele klacht
• In de actue fase:
  Aanleiding: Endogeen (geen verdere aanleidingen zoals stress o.i.d. bekend bij eigenaar)
  Lokaliteit: Bovenste luchtwegen
  Gewaarwording: Klodders uitvloeiing uit neus: groenig, dik, breiig (met klontjes). Iets meer (zwart) oogsnot dan normaal (geen ontsteking en geen traanogen).
  Modaliteiten: Onbekend bij eigenaar.

  Lokaliteit: Psyche
  Modaliteiten: Onbekend bij eigenaar.

• Sub-acute fase
  Aanleiding: Endogeen
  Gewaarwording: Niesbuien (paar tellen tot minutenlang): hoofd achterover, dan geen uitvloei of klodders. Luchtstroom uit het rechterneusgat minder dan uit het linker (het is niet zeker of dat altijd het geval is, dit is een keer door de DA geconstateerd).

• Chronische fase:
  Aanleiding: Endogeen (onderdrukking/iatrogeen)
  Lokaliteit: Luchtwegen en longen
  Modaliteiten: Onbekend bij eigenaar.

  Lokaliteit: Psyche
  Gewaarwording: Slaapt veel (”sloomste van de 3”), aanhankelijk, speelt soms met andere kat.
  Modaliteiten: Onbekend bij eigenaar.

Differentiatie, motivatie en middelkeuze
Constitutie.
Arthur heeft een duidelijke Silicea constitutie. Omdat er nog zoveel druk in de pan aanwezig is, kan er nog niet op de constitutie worden voorgeschreven. Daar heeft de Dynamis te weinig reactiekracht voor.

Acuut miasmatisch (chronisch).
Bij Arthur is er sprake van een niet goed doorgemaakte niesziekte die daardoor elke keer weer de kop opsteekt en dan elke keer d.m.v. ontstekingsremmers, AB en dergelijke onderdrukt wordt naast jaarlijkse hervaccinatie wat ook nog eens onderdrukkend werkt. Daarnaast is hij als kitten ondanks dat hij net niesziekte had (gehad) daar ook nog eens voor gevaccineerd. De logische gedachte zou
toch moeten zijn dat als er net een ziekte is doorgemaakt daarvoor voldoende antistoffen zouden moeten zijn aangemaakt en dat vaccineren dan niet nodig is.

De laatste tijd verdwijnt de niesklacht ook nooit meer helemaal, hij blijft het AMC-beeld vertonen. Bij Arthur zijn er 3 fases van ziekzijn: het acute beeld met snot e.d., het sub-acute beeld met de niesbuien die de aanloop (kunnen) zijn naar het acute beeld en het AMC beeld, wat tegenwoordig dus constant te zien wanneer hij niet acuut is.

Bij de start van de behandeling zijn Arthur’s klachten niet acuut maar de kans dat hij acuut wordt is door het jarenlange medicijngebruik en de vaccinaties levensgroot aanwezig, de druk in de pan is behoorlijk opgelopen. Daarom voorschrijven met een middel op het AM-beeld. Opvallend is dat bij Arthur zowel bij AM als AMC hetzelfde middel te gebruiken is, de klacht bevindt zich alleen in een ander stadium en vertoont daardoor een andere dynamiek.

**Erfelijke tendens.**

Bij Arthur is stagnatie op de erfelijke tuberculinische tendens te verwachten en daar zal op moeten worden voorgeschreven.

**Iatrogene belasting.**

Uiteraard moet er ook worden voorgeschreven op de iatrogene belasting, want dat is in feite de aanleiding, de ‘keynote’, voor de situatie waarin Arthur zich nu bevindt; hij heeft op hele jonge leeftijd niesziekte gekregen, dit niet goed doorgemaakt doordat de niesziekte onderdrukt werd met AB en kreeg kort daarna een katten- en niesziektevaccinatie. Deze iatrogene belasting heeft er voor gezorgd dat de niesziekte chronisch is geworden wat regulier met nog meer medicatie behandeld is en daar bovenop krijgt hij nog eens jaarlijkse vaccinaties zelfs op momenten dat hij klachten vertoont.

Sulph werkt op processen waarbij het ziekteproces van buiten naar binnen is gegaan en aangezien dit ook het geval is bij Arthur (in eerste instantie zijn alleen de bovenste luchtwegen aangedaan en nu ook de longen) wordt Sulphur ingezet. Om Sulph in de goede baan te houden en wat er nog aan gezondheid aanwezig is te optimaliseren, wordt er Carb-v naast gezet.

**Organen.**

Er is door het enorme medicijngebruik en de herhaalde vaccinaties grote kans op blokkades op orgaanniveau, dat geldt in dit geval voor de lever (filteren van bloed en afvalstoffenopslag) maar ook de pancreas kan aangedaan zijn (het vele drinken kan een aanwijzing voor suikerziekte zijn). Aangezien het bij Arthur bijna onmogelijk is om iets oraal toe te dienen en de eigenaar nog onbekend is met de behandeling die wordt gebruikt, moet een organenblokkade zich manifesteren dan kan daar alsnog op worden voorgeschreven. Voordat is dat de eigenaar dan al meer vertrouwd is met het medicatieritueel en een extra middel wordt dan over het algemeen niet als erg belastend ervaren.

**Tussenziekte.**

Niesziekte valt bij de classificatie onder tussenziektes, maar op dat gebied hoeft nu niet (meer) te worden voorgeschreven, de niesziekte is ondertussen door het onderdrukken door middel van reguliere medicatie en de niesziekte vaccinatie(s) ‘gewoon’ een chronische ziekte geworden.

**Geneesmiddelvoorschrift**

Carb-v, Tub, Puls dagelijks en Sulph 1x per week.

**Vervolg**

Arthur reageert heel goed op de ingezette medicatie, zijn vitaliteit neemt enorm toe (hij begint weer te spelen en is actief), zijn ademhaling blijft wel wisselend hoorbaar en hij niest nog af en toe, in 1ste instantie zonder kloppers.

Na een maand of 5 begint de voortuitgang te stagneren en begint hij iets meer te niezen en wat voller te klinken wat aangeeft dat het tijd wordt voor het inzetten van orgaanmiddelen. In Arthur’s geval wordt gekozen voor een Spagyrisch middel op de lever (Vinca Minor, Saraxacum, Carduus, Cheledonium en Cynara) en een oertintcuur op de longen, Lobelia inflata, die in afwisseling worden ingezet.
Om de behandeling te verdiepen wordt ook Lyc ingezet, daar reageert Arthur in 1\textsuperscript{e} instantie goed op, maar na een maand of 2 << de klachten weer en nu soms ook met klodders snot. De Dynamis kan Lyc niet meer in gezondheid omzetten. De uitvoer beperkt zich tot de bovenste luchtwegen al doen zijn longen soms wel mee door heel vol te klinken met benauwdheidsklachten tot gevolg.

Wat opvalt bij de behandeling van Arthur is dat deze begonnen is met het voorschrijven op een weinig uitgesproken psorisch beeld, er was weinig dynamië. Gaandeweg de behandeling wordt het beeld steeds duidelijker en uitgesproken, in het begin allemaal passend binnen het Puls-beeld. Totdat het eind oktober lijkt het alsof hij overprikkeld raakt, Arthur reageert niet meer met gezondheid op het inzetten van Puls al dan niet in hoge of lage frequentie.


Aangezien vaccinaties een grote rol hebben gespeeld in het ontstaan en onderhouden van Arthur’s klachten richt de zoektocht zich daar in 1\textsuperscript{e} instantie op.

Bij “Vaccination, Chronic, reactions” staan zowel Sil als Thuj 4-vaardig vermeld en Carc 3-vaardig. De MM van Thuja vermeldt bij ‘keel’: “Veel slijm in de keel dat moeilijk kan worden opgeschraapt.” (Arthur slikt op dat moment erg veel).

Verder vermeldt de MM van Thuja bij ‘Ademhalingsorganen/borsbi. Omdat dit een echt sycotisch beeld is moet er gezocht worden naar een geschikt middel op het sycotische miasma.

Daarom wordt Sulph stop gezet en vervangen door NatArs. Dit is een samengesteld middel en samengestelde middelen zijn bij uitstek geschikt bij behandeling van chronische klachten. Daarnaast is Nat-s een middel op het sycotische miasma, net als Thuja, maar Thuja is meer huid gerelateerd. Nat-s is het equivalent van Lyc (waar Arthur de laatste keer niet goed op reageerde) en collateraal met Puls, Puls werkt echter lang zo diep niet als Nat-s. Dus valt de keus op Nat-s en aangezien we bij Arthur te maken hebben met een chronische klacht kan het ook zijn dat hij de minerale middelen niet goed meer kan omzetten in gezondheid, dat deze net te diep werken. Daarom wordt Sulph stop gezet en vervangen door Nat-s 2x in de week.

Op dit nieuwe voorschrift (Carb-v, Carc, Kalibi en Lob. infl Ø dagelijks, Nat-s 2x per week) reageert Arthur in eerste instantie curatief, de frequentie van de niesbuien (al dan niet met dikke draderige snotslierten) gaan omlaag van 20 x per dag naar 4 keer per dag. Maar helaas komen de niesbuien na 8 weken ineens weer in volle hevigheid terug; Arthur kan ook dit keer de geneesmiddelprikkels niet meer omzetten in gezondheid. We lopen dus weer tegen een blokkade op. Vanwege de toegenomen uitvoer (snot) zou de lever hier een rol in kunnen spelen, dus gaat hij weer terug naar Spag-lever om de lever in dat proces te ondersteunen, maar dat zal niet voldoende zijn want waarschijnlijk is de prima causa van deze blokkade de (nies)ziektevaccinaties. Omdat Thuja bij de repertorisatie van het huidige klachtenbeeld ook sterk naar voren komt wordt besloten om Thuja 2 dagen in te zetten. Daar reageert Arthur onmiddellijk op door een enorme >> te laten zien. De frequentie van de niesbuien neemt zienderogen af. Op de 4\textsuperscript{e} dag nadat begonnen is met Thuja niest hij een hele ochtend niet! Omdat de >> dus ook nog 2 dagen na de laatste inname van Thuja doorzet wordt besloten Thuja voorlopig in een lage frequentie van 2x in de week in te zetten.

**Huidig geneesmiddelvoorschrift:** Carb-v, Carc, Kalibi en Spag-lever dagelijks, Nat-s en Thuja 2x per week

Wat het vervolg van de behandeling van Arthur laat zien is dat je, zelfs al heb je een sterk vermoeden dat vaccinaties een grote rol spelen bij de klachten, je daar niet klakkeloos op kunt voorschrijven met ‘zomaar’ een vaccinatie-middel, er moet bij de keuze daarvan een relatie zijn met het beeld dat de patiënt laat zien. Bij Arthur was dat in het begin Sulph (en Carb-v) om de rem van de Dynamis af te halen en pas na ruim een jaar behandelen laat hij een Thuja-beeld zien.
Je kunt je dan afvragen waarom Thuja niet meteen bij het begin van de behandeling werd ingezet? Dat is omdat er toen dus geen sprake was van een Thujabeeld en het dan in dat stadium waarschijnlijk niets had gedaan (als je geluk had) omdat de Dynamis de informatie niet kon ‘vertalen’. Maar voor hetzelfde geld was door in een te vroeg stadium Thuja in te zetten de druk in de pan zo enorm verhoogd dat deze zo’n beetje zou exploderen: de beroemde beginverergering die je in heel veel gevallen helemaal niet wilt zien omdat de patiënt daar veel te zwak voor is; er wordt dan teveel in beroering gebracht en de kans dat de patiënt nog ziekter wordt dan hij al was is dan levensgroot aanwezig. Arthur heeft vanaf het begin van de behandeling grote voortuitgang laten zien, hij was actief en levenslustig, en al die tijd is hij dus (onder de paraplu van de middelen) bezig geweest om alle rotzooi op te ruimen wat hem nu de ruimte geeft om te kunnen reageren op Thuja. Wat bij Arthur wel de vraag blijft is of hij blijvend >> op Thuja, of dat we weer tegen een blokkade aanlopen. Met andere woorden, in hoeverre zijn de klachten van Arthur omkeerbaar? De tijd zal het leren. Maar als we hem op dit niveau kunnen houden is er al enorm veel gewonnen.

KWPN-paard met locomotie- en hoestklachten na vaccinatie

Naam: Anna ♀
Geboren: april 2005
Start behandeling: 13-11-2010

Ziektegeschiedenis, medicijngebruik en vaccinaties

- Locomotie; Anna kent een geschiedenis van steeds terugkerende dikke benen; najaar 2008 l.a. dik been, november 2008 beide achterbenen dik, maart 2010 verdikking r.v., mei 2010 einschuss r.a., november 2010 einschuss i.a., medio december 2010: alle vier de benen dik (na vaccinatie), december 2010: r.a. dik, januari 2011 verdikking pees l.v., april 2011 alle vier de benen dik, september 2011 dik been l.a.
- Allergie; Anna heeft jeuk aan manenkam (verdikt) en staart, met name in voorjaar. Hooikoortsklachten (zie respiratie hierboven). Ze is daarnaast erg gevoelig voor vliegjes.
- Hoofdschudden; begin januari 2011 begint Anna met ernstig hoofdschudden; kan hierdoor niet meer bereden worden.
- Medicatie: AB, sedatie, shockwave, injectie tegen de hoest, foenegriek, hoestsiroop, NSAID’s, vochtafdrijvers (Durison). Bij jaarlijkse tandartscontrole: standaard sedatie.
  - Vaccinaties: Anna krijgt jaarlijks (medio december) een influenza-tetanus vaccinatie, sedert december 2010 alleen influenza vanwege haar gevoeligheid.
  - Ontwormen: volgens schema fabrikant (6x per jaar).

Anna reageert heel gevoelig op medicatie (AB) en vaccinaties. Na de vaccinatie op 14 december 2010 (om ± 18.00 uur) reageert ze diezelfde avond (om ± 21.00 uur) met een enorme spierspanning in haar nek, zo erg dat ze niet meer van de grond kan eten, en een zwelling van alle vier de benen. Een week na de vaccinatie wordt ze ingewreven met Multimilk van de Groene Os (wrijfmiddel voor soepele gewrichten) en vertoont ze een allergische reactie (dikke, jeukende, plakkaten op schouders/schoft). Het hoofdschudden dat is ontstaan in januari 2011 zou ook een relatie kunnen hebben met de vaccinatie op 14 december 2010.

Leefomstandigheden

Anna staat alleen in de wei; er is wel gezelschap van een Shetlandpony (Floor), maar vanwege hoefbevangenheid staat deze Shet op zand. ’s Nachts staan Anna en Floor op stal (aparte boxen).
**Actuele anamnese**

**Constitutie**

Aanleiding: Constitutioneel

Lokalisatie: Psyche


Lokalisatie: Psyche


Anna kan tijdens momenten van stress (dit kan een bezoek aan DA zijn, een wedstrijd, enz.) zichzelf afsluiten. Ze lijkt dan in een soort van cocon te zitten en is moeilijk bereikbaar. Een dag of wat later lijkt ze dan helemaal uit haar dak te gaan. Dit is met name wanneer ze aan de hand wordt gestapt. Ze zoekt dan echt dingen waar ze van kan schrikken. Als ze ergens voor schrikt, blijft ze er daarna bang voor. En wil ze er vandoor, dan gaat ze ook: ze ziet dan niets of niemand meer en ze heeft in haar wil om weg te rennen wel eens een harde trap naar achteren gegeven en daarmee haar eigenaar in haar buik geraakt. Anna lijkt dit vervolgens niet eens op te merken. Ze is hyper, draait, dribbelt en draait. Als ze hyper is, verliest ze ook helemaal. Ze heeft veel spanning in haar lijf. Bij winderig weer << haar gedrag. Ze heeft een hekel om buiten in het donker te lopen; dan is ze heel gespannen en druk. Anna vindt het fijner wanneer het koud droog weer is. Met de warme zomermaanden doe je haar geen plezier; voorkeur voor schaduw.

Het is niet standaard zo dat ze direct de dag na de stress uitbarst; dit kan soms ook 2 of 3 dagen later zijn. Ze toont het niet in de stal; pas op het moment dat ze naar buiten gaat, barst ze los. Als ze terugkomt van de DA begroet ze Floor niet; ze staat dan in de stal en laat haar hoofd hangen. Als Floor niet in haar buurt is (en buiten zicht) kan ze ook helemaal uit haar dak gaan. Ze wordt pas rustig als ze Floor weer ziet.

Ze is van de rechterkant moeilijker benaderbaar; ze kan soms uithalen als je haar van die kant benadert. Ze doet dit zonder te waarschuwen.

Modaliteiten: << stress, << winderig weer, << lopen in het donker.

Modaliteiten: << stress, << winderig weer, << lopen in het donker.

Aanleiding: Endogeen

Lokalisatie: Maagdarmstelsel

Gewaarwording: Ze heeft vrij veel darmgerommel en is soms ook winderig. Ze eet goed. Ze heeft een dikke buik; neiging om snel te dik te worden.

Aanleiding: Endogeen

Lokalisatie: Huid

Gewaarwording: Anna reageert heel gevoelig op insecten. Ze krijgt al hele dikke bulten van een klein huisvliegje; deze bulten worden vervolgens dikke plakkaten. Anna loopt daarom zomers in een eczeemdeken. Ze schuurt wel (staart en huid onder manen) maar schuurt zichzelf niet kapot; wel heeft ze de neiging om tegen haar buik te trappen. Op haar buik zitten de meeste bulten omdat daar geen bescherming van een deken zit, maar heeft ook omdat de beharing daar dun is. Na het insmeren met Multimilk van de Groene Os een week na haar vaccinatie krijgt Anna ter hoogte van haar schouders/schoft hele dikke “plakkaten” op haar huid.

Modaliteiten: << insecten, << vaccinatie, << Multimilk.

**Totaalsymptoom locomotie**

Aanleiding: Niet altijd duidelijk, dit kan exogeen zijn (trauma of iatrogene belasting) en/of endogeen.

Lokalisatie: Onderbenen, afwisselend.


Modaliteiten: << stil staan, >> na enige voortgezette beweging.
**Totaalsymptoom respiratie**

Aanleiding: Endogene

Lokalisatie: Luchtwegen

Gewaarwording:

- Hoest: Anna heeft regelmatig last van droge hoest. Dit is met name op het moment van aandraven. Uit haar neusgaten (niet bekend links of rechts) komt soms witte, dunne snot. De DA test haar door druk uit te oefenen op haar keel; dit geeft een hoestprikkel. Winderig, nat weer lijkt de hoest te verergeren. In de zomerperiode heeft ze weinig last. Na haar jaarlijkse enting hoest ze ook.

- Hooikoortsachtige klachten: Het lijkt er op of ze in het voorjaar een soort van hooikoorts heeft; ze is dan snotterig, hoest niet echt, maar lijkt vooral jeuk te hebben aan haar neus. Ze is de hele tijd bezig haar neus te schuren. Die schuurt ze dan kapot. Vaak heeft ze ook vieze ooghoeken (binnenzijde) als ze hoest. De uitvloei is dan wittig/doorzichtig. Het lijkt ook samen te gaan met oren; ze schudt dan vaak haar hoofd. Aan haar oren zelf is dan niets te zien (geen uitscheiding). Onbekend is of de oren dan warm aanvoelen.

Modaliteiten: << nat, winderig weer, << vaccinatie, >> zomer.

Concommittentie: Hoest en vieze ogen.

**Differentiatie, motivatie en middelkeuze**

Acuut-Miasmatisch.

Reden van komst is haar sensibele karakter, de dikke benen en de terugkerende hoest. Ten tijde van het 1e consult is er sprake van einschuss (acuut). Aanleiding hiervoor was bokken in de wei; gestart wordt met voorschrijven op de aanleiding (trauma), het acute beeld, alsook op de ontstekingstendens.

Erfelijke tendens.

Het paard als tuberculinisch wezen is gepredisponeerd voor locomotieklachten, huid en longen; daarom voorschrijven op deze erfelijke tendens.

Psora/constitutie.

Vanwege haar nu al lange geschiedenis van klachten op een zo’n jonge leeftijd ook anti-psorisch voorschrijven.

**Geneesmiddelvoorschrift**

Carbo-v, Tub (2x daags), Arn, Pyrog, Rhus-t (1x daags).

**Vervolg**

Anna laat een wisselend beeld zien;

Te zien is een paard met een ontstekingstendens = ontvlammingen. Na een paar maanden in de behandeling laat Anna met name een psychische ontvlamming (boosheid) zien. Ze komt uit de acute fysieke fase en gaat naar een min of meer subacute mentale fase. Dit is een gezonde reactie; er wordt niet onderdrukt en dit geeft de Dynamis de mogelijkheid zich te uiten (er komt ruimte). De lever is hier als orgaan bij betrokken. Vervolgens neemt de boosheid weer af en wordt Anna weer AM (dik achterbeen).

Dit schommelde beeld laat zien dat er sprake is van heel veel druk in de pan en dat de huidige middelen de druk er onvoldoende af halen (het blijft maar borrelen).

**Nosodewissel**

Bij Anna is een enorme transparantie, een grote doorlaatbaarheid te zien. Ze laat alles (te diep) binnenkomen. Daarom wordt Tub vervangen door Carc. Puls, inmiddels ingezet op het mentale beeld, kan dan werken onder de paraplu van Carc.
Hoogstwaarschijnlijk spelen de organen (lever, nier en pancreas) een hoofdrol. Wanneer een dier zich uit door middel van zwelling op het moment dat het al behandeld wordt met een levermiddel, spelen de nieren een rol. Maar Anna is nog niet zo ver dat ze al behandeld kan worden met een Spagyrisch middel of een oertinctuur rechtstreeks op het orgaan; daarvoor is de druk in de pan nog te hoog. Carc en Puls leggen alvast een basis voor Anna en maken de weg vrij om straks dieper te kunnen voorschrijven.

Uit het bovenstaande verhaal blijkt wel hoe gevoelig dit paard is. Anna is op 3,5 jarige leeftijd bij haar huidige eigenaresse gekomen. Anna’s fokker wilde haar als fokmerrie houden maar vanwege haar moeilijke gedrag is ze verkocht aan een handelsstal waar ze is ingereden. Onbekend is hoe ze bij fokker en handelsstal heeft gereageerd op vaccinaties; was er direct al sprake van een << na vaccinatie dan wel medicatie? Of heeft de iatrogene belasting zich in de loop der jaren opgebouwd? Dit weten we niet. Wat we wel weten, is dat Anna na de laatste vaccinatie binnen enkele uren reageerde.
UITKOMSTEN VRAGENLIJST

In januari 2011 hebben wij op diverse internetfora een oproep geplaatst waarin wij honden-, katten- en paardeneigenaren gevraagd hebben mee te werken aan een onderzoek, aan de hand waarvan wij een antwoord hoopten te krijgen op de vraag of er een overeenkomst is in de klachten die optreden tijdens of na een vaccinatie. Ook wilden we onderzoeken of de aangeboren eigenschappen (constitutie) van het dier hier een rol bij spelen evenals eventueel medicijngebruik.

Ons doel hierbij was het sneller kunnen herkennen van klacht(en) die gerelateerd zijn aan vaccinaties en daardoor doeltreffender kunnen handelen door zowel eigenaar als de behandelend klassiek homeopaat.

Helaas werd er erg weinig gehoor gegeven aan onze oproep en hebben we te weinig reacties gekregen om via deze weg een overtuigend antwoord op onze vragen te krijgen. Er hebben zelfs mensen de moeite genomen om de vragenlijst helemaal in te vullen met de vermelding dat hun dier(en) nooit last heeft gehad van klachten na vaccinatie. Dit vinden wij uiteraard erg prettig om te horen, echter het doel van ons onderzoek(ie) was niet om te kijken hoe vaak klachten na vaccinatie voorkomen, maar welke klachten er voorkomen, omdat wij juist die gevallen in onze praktijk krijgen.

14 hondeneigenaren hebben de moeite genomen om de vragenlijst helemaal in te vullen, naast 1 katteneigenaar en 2 paardeneigenaren. Omdat wij het jammer vinden helemaal niets met de gegevens te doen en ze ongebruikt en ongelezen in de kast te laten liggen geven wij hier verkort de ingevulde gegevens weer, zonder daar meteen harde conclusies aan te verbinden.

**Honden**
12 rassen waarvan 5 kruisingen (de Labradoodle is geen officieel erkend ras en rekenen we daarom tot de kruisingen):
- Duitse jachttfterrier
- Dwergkees
- Golden retriever
- Gordon Setter
- Labradoodle (2)
- Lagotto Romagnolo
- Lancashire Heeler (2)
- Maltezer
- X Mechel/Am. Stafford
- X Pett Brabacon/Chihuahua langhaar
- X Schotse herder langhaar/Whippet
- Zwitserse herder

Opvallend is wel dat bijna al deze honden een Silicea constitutie hebben. De constitutie hebben wij bepaald aan de hand van de meegestuurde foto en de karakteromschrijving. Van de Gordon Setter vermoeden wij dat deze een Phos constitutie heeft.

**Geslacht**
- 8 reuen, waarvan 2 gecastreerd en 6 teven waarvan 4 gecastreerd in de leeftijd van 1 tot 10 jaar oud.

**Katten**
- Oosters, korthaar (2009), kater, gecastreerd. Sil constitutie.

**Paarden** (allebei merrie en Sil constitutioneel)
- Anglo-Arabier x Quarter horse
- Andalusier
Voeding
Honden: 3 honden kregen brokvoeding, waarvan 1 hypoallergeen, 3 honden aten vers (BARF/NRV), 3 honden aten een commercieel versvoer product (diepvries), 3 honden aten vers (BARF/NRV) gecombineerd met een commercieel compleet versvoerproduct en 1 hond een combinatie van vers, commercieel compleet versvoerproduct en brokken en 1 hond volgde een eliminatiedieet van alleen gekookte struisvogelbiefstuk.
Katten: vers (BARF/NRV) gecombineerd met een commercieel compleet versvoerproduct.
Paarden: Uiteraard gras en hooi + krachtvoer (1 paard). Kuil, slobber, muesli van Havens (1 paard)

Beloningen
Deze liepen uiteen: Frolic, hondenkoekjes, knakworst, pensstaafjes, gedroogde long, bullepees, kaas, brood, fruit, komkommer, tomaat en tafelrestjes werden genoemd.
Worteltje of snee oud brood (2 paarden), appels (1 paard)

Vaccinaties
Hoewel iedereen erg zijn best heeft gedaan alle vaccinaties te noteren zijn daar wel wat onvolkomenheden in geslopen, sommige mensen zijn vergeten de fabrikant te vermelden en enkele vermelden slechts: cocktailenting.

Honden
Alle honden hebben hun pupvaccinaties gehad, deze bestaat minimaal uit distemper (= hondenziekte) en parvo, er zijn honden die daarnaast bij hun 1e vaccinatie (dus op de leeftijd rond de 6 weken) ook nog eens met parainfluenza werden gevacineerd (2 honden) en 1 hond heeft als 1e pupvaccinatie het volgende arsenal meegekregen: hondenziekte, HCC, parvo en parainfluenza, dat is behoorlijk veel voor een pup op zo'n jonge leeftijd.
Van 3 honden zijn de precieze pupvaccinaties onbekend.

De 2e vaccinatie (rond de 8-9 weken) verschilt nogal, we komen bij 1 hond een cocktail tegen van: Hondenziekte, HCC, parvo, lepto, parainfluenza met bordetella + parainfluenza (door deze cocktail krijgt de hond dus 2x het parainfluenzavirus toegediend).
Hondenziekte, HCC, parvo, lepto en parainfluenza (2 honden)
Hondenziekte, HCC, parvo en lepto (1 hond)
Parvo, lepto, parainfluenza en bordetella + parainfluenza (1 hond)
Parvo (1 hond)
Parvo en lepto (4 honden)
Parvo, lepto en parainfluenza (1 hond)
Het merendeel van de pups werd dus bij de 2e enting gevacineerd met in ieder geval parvo en lepto.

De 3e pupvaccinatie bestond bij 7 honden uit:
Hondenziekte, HCC, lepto en parainfluenza (3 honden)
Hondenziekte, HCC, lepto, parainfluenza en bordetella + parainfluenza (1 hond)
Hondenziekte, HCC, lepto (1 hond)
Hondenziekte, HCC, en parainfluenza (1 hond)
Rabies en bordetella + parainfluenza (1 hond)
4 honden hebben geen 3e pupvaccinatie gehad.

2 honden zijn in hun puptijd een 4e keer gevacineerd:
Parvo en lepto (1 hond)
Hondenziekte, HCC en parainfluenza (1 hond)

Katten
1e kittenscineatie niesziekte, 2e kittenscineatie niesziekte en kattenziekte

Paarden
Bij geen van de paarden is bekend welke veulen-entingen zij gehad hebben. Beide paarden worden jaarlijks gevacineerd met influenza en tetanus.
1 paard is 2x met een tussenperiode van 7,5 week gevacineerd met Duvaxyn EHV 1,4 (Rhino)
**Ziekteverschijnselen na vaccinatie**

De ziekteverschijnselen die de eigenaren na vaccinatie waarnemen lopen nogal uiteen.

**Neurologisch**

- **Epilepsie 3 dagen na Nobivac Lepto vaccinatie.**
  
  Deze hond heeft in zijn puptijd de tweevoudige basisvaccinatie in de vorm van een cocktailvaccinatie gehad en een herhalingsvaccinatie. Opvallend bij deze hond is dat hij een verleden heeft van diarreeklachten (vanaf de leeftijd van 8 weken), ruim een jaar later positief werd getest op Giardia (waarvoor hij behandeld is met Panacur) en 7 weken voor de laatste leptovaccinatie 40°C koorts heeft gehad met misselijkheid en pijn na het zwemmen in een vieze sloot. Hij is daarvoor behandeld met een antibiotica injectie en Marbocyl (20 mg 12x) en reageerde met een bult op de injectieplaats. In de bijsluiter van Marbocyl injectie wordt als bijwerking genoemd: “in zeldzame gevallen neurologische verschijnselen (toevallen, ataxie, mydriasis, spiertrillingen) en reacties op de injectieplaats”.

  Wij kunnen ons voorstellen dat de antibiotica injectie het neurologische systeem getriggerd heeft waardoor de druk in de pan is opgelopen en dat de leptovaccinatie, die ook een grote relatie heeft met het neurologische systeem, de druppel was die de emmer of beter gezegd de pan, deed overlopen.

  Momenteel heeft deze hond geen last meer van de epilepsieklachten en krijgt hier ook geen medicatie meer voor, na ongeveer een jaar waren de klachten afgenomen tot 0 (Gordon Setter).

**Uitscheidingsorganen**

- **Slijmvliezen neus, ogen, oren, darmen aangedaan na elke Nobivac lepto vaccinatie.**

  Symptomen: uitvloei uit ogen, neus en oren (soms zelfs ontstoken) en 2 weken na vaccinatie diarree.

  Opvallend is dat deze hond in zijn 1e levensjaar een zware kennelhoestinfectie heeft gehad en ook kampte met chronisch terugkerende diarreeklachten. Door gebrek aan gegevens over de pupvaccinaties is het niet duidelijk of deze een invloed hebben gehad op het ontstaan van de kennelhoest en chronische diarree in zijn 1e levensjaar.

  Wat verder opvalt bij deze hond is dat hij niet met zichtbare klachten reageerde op vaccinaties waar geen lepto in zat.

  Eigenaar meldt dat er geen klachten waargenomen zijn na de 1e rabiësvaccinatie, maar de hond krijgt in het half jaar daarna wel last van een 3 maand durende periode van slecht eten (tijdsband is niet helemaal duidelijk) wat resulteert in extreem afvallen. De behandeling dierenarts wijdt de klachten aan zijn hormonen en stelt castratie voor.

  Als je het klachtenverloop van deze hond bekijkt zie je eigenlijk een voortschrijdend ziekteproces, de hond wordt na elke vaccinatie net ietsje zieker. Het zelfherstellend vermogen kan het ziekteproces niet meer omkeren wat uiteindelijk resulteert in een verzwakte nierfunctie en verzwakte endeldarm.

  Nu zullen heel veel mensen zeggen: ja, maar je kunt toch niet bewijzen dat dit door de vaccinaties is veroorzaakt?

  Nee, dat kunnen we inderdaad niet bewijzen. Maar wat we wel kunnen zien zijn duidelijke reacties na de leptovaccinaties, dat geeft in ieder geval aan dat die vaccinatie zichtbaar iets met het zelfherstellend vermogen doet. En ook in dit geval heb je niet alleen te maken met de vaccinatie(s) er is namelijk ook nog ‘de hond’ die met zijn Silicea constitutie op die vaccinatie reageert: zijn Dynamis kan het genezingsproces niet meer in gezondheid omzetten. Bij deze hond komt de wijzer na vaccinatie zelden weer helemaal op het nulpunt terug. Wat resulteert in een steeds ziekere wordende hond; de pathologie wordt zelfs zichtbaar op orgaan niveau (nierwaardes linker nier zeer verzwakt) (Golden Retriever 2001).  

- **Symptomen: Voorhuidontsteking enkele weken na cocktail met hondenziekte, HCC, parvo en lepto of parvo en lepto (merk onbekend).** De eigenaar meldt ook dat deze hond altijd gedurende 4-6 dagen na de vaccinatie reageert met diarree, overgeven, loom, meer slapen en duidelijk niet lekker zijn (Zwitserse herder).

- **Symptomen: oog half dicht met heldere uitscheiding. Dit ‘prutoog’ begint 4 dagen na vaccinatie met nies- en kattenziekte en is 2 weken na vaccinatie op zijn ergst, de kat heeft er een jaar later
nog steeds enigszins last van. Dierenarts bevestigt vermoeden ent-reactie en raadt aan in het vervolg eerst te titeren. (Oosters, korthaar)

- **Symptomen:** Koorts en diarree, niet lekker in vel zitten. Begint een week na vaccinatie met Equilis prequenze Te en houdt ongeveer een maand aan. Het stalmatie van dit paard is in deze periode verhuisd. Over de verdere vaccinatiehistorie van dit paard is niets bekend/wordt niets vermeld (Andalusier).

### Allergische reacties

- **Symptomen:** een uur na vaccinatie ontstaat onrust, hijgend heen en weer lopen, resulterend in suf worden en zwelling van neus en van kop, bewustzijnssverlies na 2,5 uur na 2e pupvaccinatie met Nobivac Lepto, Nobivac Parvo-C en Nobivac Pi (parvo, lepto en parainfluenza). Dierenarts heeft een injectie dexamethason toegediend. De 1e pupvaccinatie bestond uit Nobivac DP (hondenziekte en parvo).
  Bijzonderheid bij deze hond: vader was drager van het MDR 1 gendefect, deze hond is daar later ook op getest en bleek ook drager te zijn. Dus ook hier speelt een gevoeligheid in de hond zelf mede een rol (Schotse Collie langhaar x Whippetkruising 2008).

- **Symptomen:** Slappe pootjes, ronddraaien, braken, dikke ogen 5 min. na 3e pupvaccinatie bestaande uit een cocktail van hondenziekte, HCC, parvo, parainfluenza, lepto en KC (bordetella en parainfluenza) (onbekend welk merk). Dierenarts heeft meteen een injectie toegediend (niet bekend welke) (Petit Brabaco x Chihuahua langhaar 2010).

### Auto-immuunerelateerde klachten

- **Symptomen:** binnen 24 uur na vaccinatie slap worden, braken, bloederige diarree, niet willen eten. Diagnose dierenarts: auto-immuunreactie (voedselallergie) op vaccinatie (herhalingsvaccinatie met Nobivac Nobivac DHP + Lepto (hondenziekte, HCC, parvo en lepto)). Therapie: 6 weken lang cortisonen en daarna langzaam afbouwen naast hypoallergeen dieet. Het betrof hier een vaccin waar deze hond al vaker mee was gevaccineerd. Deze hond had in het verleden een anaalklierontsteking, darminfectie en blaasontsteking gehad die behandeld zijn met antibiotica (Duitse Jacht terrier 2006).

### Respiratieklachten

- **Symptomen:** hoesten bij inspanning, later ook in rust, heeft weken geduurd. Klachten begonnen 6 dagen na de 2e pupvaccinatie bestaande uit Nobivac Parvo-C, Nobivac Lepto en Nobivac KC (bordetella en parainfluenza). De 1e pupvaccinatie bestond uit Nobivac Puppy DP (hondenziekte en parvo) (Lancashire Heeler 2010).

### Locomotieklachten

- **Symptomen:** Week lang hals niet kunnen buigen en zeer stijf en kreupel na vaccinatie met Duvaxyn EHV 1,4 (rhino). Bij vaccinatie in borstspier duidelijk opgezette borstspier (Anglo-Arabier x Quarter horse).
Dan zijn er nog de **kortdurende tijdelijke reacties**:

- Trillen, koorts, braken, diarree, suf en lusteloos 2 weken na vaccinatie met Eurican DA2PVPI2Lci/Nobivac KC (hondenziekte, HCC, parvo, lept, parainfluenza en KC (bordetella en parainfluenza)).
- Braken, lusteloos, diarree, anorexia, trillen 4 dagen na rabiës vaccinatie (merk onbekend), na 2 dagen over.
- Flinke bult op injectieplaats na rabiësvaccinatie (merk onbekend), deze is na 4 weken verdwenen.
- Alleen maar sloom van de vaccinaties, nooit ziek.
ALTERNATIEVEN VOOR VACCINATIE

In het 1e deel hebben wij de mogelijkheden tot minder vaccineren i.c.m. een eventuele titertest aangestipt. Maar stel dat je nog een stap verder zou willen gaan; zijn er alternatieve preventiemogelijkheden?

Om te beginnen herhalen wij hier voor het overzicht nog een keer wat wij al in het 1e deel hebben geschreven.

Wanneer je kiest voor niet vaccineren moet je kunnen leven met het feit dat je dier een ziekte op kan lopen, ernstig ziek zou kunnen worden en in sommige gevallen zelfs ten gevolge hiervan kan overlijden.

Maar datzelfde verhaal geldt natuurlijk ook bij de keuze voor wel vaccineren, ook dan kan een dier ernstig ziek worden en zelfs komen te overlijden. Opvallend is dat veel eigenaren beter met de laatste keuze kunnen omgaan dan met de eerste. Misschien komt dit doordat eigenaren bij de keuze voor wel vaccineren meer het gevoel hebben dat zij er alles aan hebben gedaan om hun dier zo beschermd mogelijk te maken?

Homeopathische preventie

Hoewel het bij de toepassing van homeopathie gaat om het voorschrijven op de aanwezige ziektesymptomen (het beeld) ontdekte Hahnemann dat Belladonna naast curatief ook preventief kon worden ingezet bij roodvonk; kinderen die hij gedurende de epidemicie preventief met Belladonna behandelde werden geen van allen ziek. En we hebben in dit homeopathische deel al kort vermeld dat C. von Boeninghausen, een van Hahnemann's eerste studenten, de Thuja preventief kon worden ingezet om ervoor te zorgen dat familieleden van pok-patiënten niet ziek zouden worden. Hij en Hahnemann hebben dit echter, voor zover wij weten, nooit op langdurige basis ingezet, slechts alleen tijdens epidemieën (bijv Cholera epidemicie in 1831 waarbij Hahnemann succesvol zowel preventief als curatief Camphora, Cuprum Metallicum en Veratrum Album inzette).

In deze bovenstaande voorbeelden gaat het om middelen die reeds hun curatieve mogelijkheden hadden bewezen bij de desbetreffende ziekte; ze dekken het beeld van de ziekte.

Er zijn natuurlijk veel meer voorbeelden te noemen van beroemde homeopaten die in de loop der tijd homeopathische middelen zeer succesvol ter preventie inzetten, maar met dat onderwerp alleen kun je al een leuke scriptie vullen, dus wij laten het voor nu bij deze korte vermelding.

Nosodes

Waar wij nog wel even (kort) op in willen gaan zijn de nosodes, dit onderwerp valt eigenlijk buiten het bereik van ons scriptie en zelf zijn we (nog) niet echt bekend met het gebruik hiervan in deze context maar we willen het hier toch even kort noemen.

Een nosode is een homeopathisch (gepotentieerd) middel wat gemaakt wordt van ziekteweefsel of excreties van een bepaalde ziekte (Griekse woord voor ziekte is nosos).

Er zijn tegenwoordig verschillende dierenartsen, huisartsen en (klassiek) homeopaten die nosodes gebruiken ter preventie van de desbetreffende ziekte, dit zou als alternatief voor vaccinatie gebruikt kunnen worden.


Over de frequenties en potenties bij het inzetten van nosodes bestaat geen eenduidigheid. De nosode moet in ieder geval wel op regelmatige basis worden ingenomen wil het effectief blijven, de laagst genoemde frequentie na een aanvangsdosis is om de 4 maanden. Verder zullen nosodes de productie van antilichamen niet stimuleren, ze zijn in dat opzicht niet te vergelijken met vaccinaties.

Leidraad bij het in overweging nemen over het al dan niet preventief inzetten van een nosode is de patiënt zelf. Deze manier van nosodegebruik zal namelijk niet voor elk dier geschikt zijn; voor
bijvoorbeeld heel gevoelige dieren zou het middel wel eens erger dan de kwaal kunnen zijn. Het is ook hier van belang te kijken naar het individu.

**Niet vaccineren, en dan?**
Stel dat je besluit tot niet vaccineren, dan wil dat nog niet zeggen dat je helemaal niets moet of kunt doen, in tegendeel!

Ten eerste is daar natuurlijk de conditie van het dier, dit lijkt een open deur, maar toch vermelden wij dit hier voor de zekerheid: zorg ervoor dat je dier in een zo optimaal mogelijke conditie verkeert. Dat houdt in: juiste huisvesting, voeding, omstandigheden (dat een dier (enigszins) kan doen waarvoor hij op deze wereld is, er van hem gehouden wordt enz.).

Zorg er daarnaast voor dat er in geval van ziekte ook gelijk behandeld kan worden door zelf een homeopathische EHBO doos in huis te hebben; in (telefonisch) overleg met de behandelend homeopaat kan er bij acute klachten meteen een middel ingezet worden om het ziekteproces te couperen. Het zelfherstellend vermogen wordt op deze manier zo snel mogelijk aangesproken zodat het ziekteproces zich meteen weer kan gaan omkeren richting gezondheid.

In feite zijn er geen onbehandelbare ziektes, maar kun je beter spreken over onbehandelbare patiënten; dat zijn patiënten die niet voldoende reactievermogen (meer) op kunnen brengen om de klacht in gezondheid om te zetten.
SAMENVATTING EN CONCLUSIES

In het homeopathische deel hebben we uitgelegd dat ziekte (en dus ook klachten na vaccinatie) in wezen niets meer is dan een verstoring van de Dynamis; deze verstoring uit de Dynamis door ziektesymptomen, de klacht. Door middel van het ziekteclassificatie-model krijgt elk facet dat een rol heeft gespeeld in de totstandkoming van deze klacht een plaats in de behandeling, dus ook de eventuele vaccinatie(s). Genezing is alleen mogelijk wanneer wordt voorgeschreven op de totaliteit der ziektesymptomen, waarbij de Dynamis uiteraard wel in staat moet zijn tot omkering van de klachten.

Dit is een geheel andere benadering dan de reguliere. Daar wordt (meestal) alleen gekeken naar de klacht (wat in het pan-model door de wolken wordt gerepresenteerd) en wanneer deze klacht verdwenen is, is iedereen tevreden. Het wegnemen van klachten is uiteraard een nobel streven, maar wat niet uit het oog verloren moet worden is op welke wijze deze klachten uit het gezichtsveld verdwijnen. Worden klachten slechts onderdrukt door bijvoorbeeld AB en/of prednison dan vindt er geen echte genezing plaats, sterker nog, de pan komt alleen nog maar meer onder druk te staan omdat met het wegnemen van alleen de wolken deze uitingen van de Dynamis wordt ontnomen en met het onderliggende aanleiding niets wordt gedaan. Daardoor moet het organisme - de Dynamis - een andere weg zoeken om zijn ontstemd zijn te uiten en wordt gedwongen dit op een ander, dieper liggend niveau te doen. Dit is vaak het begin van een chronische aandoening.

Als veterinair klassiek homeopaat willen wij niet alleen maar de klacht wegnemen, maar willen wij ook op de onderliggende aanleiding(en) en tendensen behandelen om ervoor te zorgen dat er na korte dan wel lange tijd geen “wolken” meer opdoemen. Het doel is dus om de druk in de pan ter verlaging zodat de Dynamis ruimte krijgt om te reageren zodat er geen klachten meer ontwikkeld hoeven te worden om het ‘ontstemd’ zijn te uiten.


Dit werktijnsmechanisme ligt volgens ons ten grondslag aan Burnett’s theorie dat vaccinaties chronisch ziek maken. Wij denken dat wanneer Hahnemann nog wat langer geleefd zou hebben om te zien welke gevolgen een vaccinatie op het organisme heeft, hij ook tot die conclusie zou zijn gekomen. Maar wij moeten het doen met zijn theorie van 2 gelijkende ziektes wat zou inhouden dat er bij chronische ziekte (veroorzaakt door de vaccinatie) in het organisme geen ruimte meer is voor de natuurlijke ziekte (besmetting met de natuurlijke ziekte) en dat zou de gevaccineerde moeten beschermen tegen ziek worden voor die bewuste ziekte.

Helaas gaat die vlieger lang niet altijd op, zoals we ondertussen steeds vaker in de praktijk kunnen zien, denk hierbij aan ons voorbeeld van de hondenziekte-uitbraak in Finland die we genoemd hebben in het eerste deel, maar ook aan de bof vaccinatie, ook deze blijkt in de praktijk niet werkzaam; mensen krijgen toch de bof ondanks dat ze daarvoor gevaccineerd zijn. Daarnaast moeten we vooralsnog niet vergeten hoe die onnatuurlijke ziekte (de vaccinatie) in het lichaam is gekomen: namelijk (in de meeste gevallen) d.m.v. een injectie wat op zich al geen natuurlijke manier van besmetting is.

En dan hebben we nog de vaccines zelf. Wij hebben ons in onze inleiding al wat vragen gesteld:
1. Staat het risico van vaccineren wel in relatie tot de eventuele op te lopen ziekte?
2. Biedt het vaccin wel de verwachte bescherming? Veel vaccins bieden ‘slechts’ een vermindering van de klinische symptomen; dit betekent dat een dier de ziekte wel kan oplopen, maar er minder ziek van zou worden, terwijl je als eigenaar misschien in de veronderstelling bent dat je dier beschermd is voor deze ziekte.
3. Wat doet een vaccinatie naast de beloofde bescherming nog meer met het lichaam, wat zit er in aan hulpstoffen en adjuvantia?
4. Hoe zit het met de geadviseerde herhalingsfrequenties? Waarom ben je bijvoorbeeld als mens voor 15 jaar beschermd tegen tetanus en zou je je paard elke twee jaar voor deze ziekte moeten laten vaccineren?

Eigenlijk is op geen van deze vragen een eenduidig antwoord te geven. Want als vaccineren niet zou werken hoef je al deze vragen niet eens te stellen. Toch gaan we een poging wagen.

1. Of het risico van vaccineren in relatie met de eventuele op te lopen ziekte staat, is soms moeilijk te beoordelen. Maar er is ziektes waarbij je je serieus kunt vragen. Waarom zou een dier deze (natuurlijke) ziekte oplopen, dan wordt hij in de meeste gevallen ziek en herstelt hij vanzelf weer. We zijn tegenwoordig erg bang geworden voor ziek zijn, terwijl een ziekte (goed) door maken alleen maar leidt tot meer gezondheid. Daarnaast zouden we overweg kunnen zijn of een ziekte nog in Nederland (of jouw woonomgeving) voorkomt, want dat is bij een aantal ziektes niet of nauwelijks meer het geval.

2. Vaccinatie voorkomt niet altijd ziek worden! Sommige vaccins bieden ‘slechts’ een verminderdering van de klinische symptomen. Soms is verminderdering van de klinische symptomen inderdaad te verkiezen, zeker wanneer de andere optie overlijden zou zijn. Maar wees je wel van dit feit bewust. Dus controleer dit in de bijsluiter of registratie of informeer hiernaar bij je dierenarts.

3. Informatie over hulpstoffen en adjuvantia is vaak niet makkelijk te vinden. Zoals we al in het 1e deel hebben gezegd: deze informatie vind je soms alleen maar in de registratie en wordt vaak niet eens in de bijsluiter vermeld, waardoor ook je dierenarts hiervan misschien niet op de hoogte is. Registraties van (dier)geneesmiddelen zijn op te zoeken op de site van het College ter Beoordeling van Geneesmiddelen: http://www.cbg-meb.nl/ en klik dan midden onder op de pagina op “diergeneesmiddelen informatiebank”. Wij hebben in het eerste deel een overzicht gegeven van de verschillende hulpstoffen en adjuvantia en hun uitwerking op het lichaam.

4. De herhalingsfrequenties; waarom hoeft de tetanusvaccinatie bij de mens slechts om de 15 jaar herhaald te worden en bij een paard om de 2 jaar (al wordt deze vaccinatie nog opvallend vaak jaarlijks gegeven)? Waarschijnlijk ontstaan deze ‘discrepanties’ doordat er gewoonweg geen wetenschappelijk onderzoek naar is gedaan. Zoals we in het 1e deel al hebben gezegd: fabrikanten mogen alleen hun eigen (wetenschappelijke) bevindingen vermelden. Blijkbaar is het niet lucratief genoeg om langlopende onderzoeken uit te voeren. Vaccineren levert een fabrikant natuurlijk geld op. En dat is een beetje het dubbele aan deze opzet.

Bij de hondenvaccins zien we daar overigens een kentering in komen, Nobivac is daar als eerste met een langere herhalingsfrequentie gekomen waardoor mensen juist naar dat vaccin gaan vragen, zodat er bij de hondenvaccins steeds meer fabrikanten komen die bereid zijn langer durende onderzoeken te doen.

Zoals we al in het homeopathische deel hebben uitgelegd - en wat ook blijkt uit onze eigen praktijkcasuïstiek alsook uit de ingevulde vragenlijsten - is dat klachten na vaccinatie altijd samenhangen met meerdere zaken, zoals bijvoorbeeld de gevoeligheid van de gevaccineerde.

Wat als een paal boven water staat is dat vaccinaties iets doen met het organisme op stoffelijk en energetisch niveau en dat is ook de bedoeling, want zonder reactie op een vaccinatie ontstaat er geen meetbare immuniteit. De reguliere gedachte achter vaccineren is dat een dier in contact komt met een (verzwakte) ziekteverwekker, daar op gaat reageren - dus in feite ziek wordt - maar niet zo erg dat het dier daar werkelijk last van heeft. Burnett was één van de eerste die vaststelde dat vaccineren dus in feite een chronisch zieke toestand veroorzaakt.

Maar als je goed nadenkt, is dit principe wel een beetje krom; aan de ene kant wordt een ziekmaking pathogen verzwakt zodat niemand er ziek van wordt, maar omdat het pathogen zo zwak is, reageert het immuunsysteem niet, wat weer de reden is dat er stoffen aan het vaccin worden toegevoegd om het immuunsysteem te prikkelen, om ervoor te zorgen dat het immuunsysteem in zo’n ontvankelijke staat wordt gebracht dat het wel reageert op dat zwakke pathogen. Dus eigenlijk zou
je kunnen zeggen dat het immuunsysteem door die adjuvanta en hulpstoffen in een overprikkelde staat wordt gebracht.

Wij zijn van mening dat de ‘weerbaarheid’ of vitaliteit van de patiënt zelf een grote rol speelt bij klachten na vaccinatie. Deze natuurlijke weerbaarheid wordt echter wel steeds minder. Veel honden, katten en paarden worden tegenwoordig zeer selectief op hun uiterlijke kenmerken gefokt; dit selecteren heeft in de meeste gevallen tot gevolg dat de genenpoel verkleind wordt waardoor de fokbasis steeds smaller wordt. Daarnaast worden onze dieren reeds (dieren)generaties lang gevaccineerd en zou je de theorie van Burnett volgen dan wordt er in feite dus al generaties lang met chronisch zieke dieren gefokt. Dit zou ook kunnen verklaren waarom er steeds meer (erfelijke) ziektes als kanker, auto-immuunziektes en allergieën voorkomen.

Wij zien dit verlies aan weerbaarheid/vitaliteit ook terug in onze casuïstiek. Deze weerbaarheid (of in homeopathische termen: het vermogen tot herstel, de mate waarin een klacht omkeerbaar is) hangt ook nog af van andere zaken, namelijk hoelang is er al sprake van klachten? Hoe lang is er al sprake van onderdrukking door vaccinatie?

Arthur, Anna en Sara zijn voorbeelden van dieren die door hun leeftijd en jarenlange vaccinatie en iatrogene belasting moeilijker herstellen dan bijvoorbeeld een jonge hond als Pako waar al in een heel vroeg stadium begonnen is met behandelen.

Ezra is een voorbeeld van een (jonge) hond die heel heftig reageert en Lara in feite ook, maar bij Lara was er sprake van een behoorlijke iatrogene geschiedenis waarbij er in het verleden al regelmatig tekenen waren dat ze op medicatie (teken-en-vlooienpipet, vaccinaties) reageerde. Bij haar is de druk dus in de loop van de jaren opgebouwd; was zij direct homeopathisch behandeld bij de eerste tekenen van haar reacties op reguliere medicatie, dan was de druk in de pan waarschijnlijk nooit zo hoog opgelopen dat de uiteindelijke auto-immuun gemedieerde poliartritis.

Bij aanvang van onze scriptie hadden wij voor ogen een informatief document op te stellen waarbij we de angst voor minder vaccineren wilden wegnemen en aan de hand waarvan eigenaren een weloverwogen keuze zouden kunnen maken hun dier wel of niet, of d.m.v. een aangepast protocol te laten vaccineren. Hoewel al schrijvend onze scriptie wellicht steeds meer op een anti-vaccinatie campagne begon te lijken - door ons toenemende inzicht en het uitblijven van overtuigende resultaten van vaccineren zijn we steeds meer vraagtekens gaan zetten bij het nut ervan – is het is geenszins onze intentie om bescherming tegen bepaalde ziektes af te keuren of tegen te houden.

Hoewel het schrijven van de scriptie ontzettend veel tijd (zeg maar gerust al onze vrije tijd) op slokte hebben we er met veel plezier aan gewerkt. Vaccineren is en blijft een fascinerend onderwerp waar we ondanks de lengte van deze scriptie nog lang niet over zijn uitgeschreven en uitgedacht! We eindigen deze scriptie met een vrij vertaalde citaat van April Oakes, President van TAAP, die in onze ogen alles perfect samenvat:

“God heeft ons geschapen met een perfect werkend immuunsysteem. Hij gaf ons koorts om een virus weg te branden, overgeven en diarree om een virus te elimineren en wat de mensheid heeft gedaan is het onderdrukken van koorts, het onderdrukken van overgeven, het onderdrukken van diarree. Daarnaast heeft de mensheid het door God geschapen afweersysteem gepasseerd door toxines, dierlijke virussen en geaborteerd foetus weefsel om zo immunitéet te creëren. En dan vragen we ons nog af waarom er zo veel auto-immuunziektes zijn? We staan letterlijk toe dat de mensheid de rol van God overneemt.”
REFERENTIES EN BIBLIOGRAFIE


Boeken:
• Burgmeijer, Rudy; Hoppenbouwer, Karel: Handboek vaccinaties. 2e herziene druk. 2011 Koninklijke Van Gorcum BV. Postbus 43, 9400 AA Assen. (online via Google Books)
• Burnett, James Compton: Vaccinosis and its cure by thuja: with remarks on homeoprophylaxis
• Coulter, Catherine R.: Psychologische portretten deel 1, 2 en 3. 2002 Uitgeverij Homeovisie bv, Alkmaar.
• Groenink, J.A.: Pathofysiologie: een inleiding tot de interne geneeskunde. Pag 354 (Polypeptiden) Bohn, Staflven van Loghun. 2006 (Online, via Google books)
- Pavor, Tony; Pavor, Marcy: *Handboek Paardenziekten in woord en beeld*. Veltman Uitgevers. 2006. ISBN 90-5920-448-4

**DVD:**
In search of the truth about dogs (an introduction to natural canine health). Canine Health Concern, Perth (GB).

**Mondelinge overlevering**
Lezing/les VHCN door Tannetje Koning (7-11-2009). **De jaarlijkse enting. Nodig of niet?**

**FYSIOLOGIE, Pathogenen en Immuunsysteem**
Lezing/les VHCN door Tannetje Koning (7-11-2009). **De jaarlijkse enting. Nodig of niet?**
http://nl.wikipedia.org/wiki
http://nl.wikipedia.org/wiki/Prion
http://users.rcn.com/jkiri/ma.ultranet/BiologyPages/T/Th1_Th2.html
http://www.aidsenhiv.nl/hoewerkthetatafweersysteem.php
http://www.biopiek.org
http://www.merckmanual.nl
http://www.merckmanual.nl/mmhenl/sec06/ch090/ch090a.html
http://www.microbiologie.info
http://www.sanquin.nl
http://www.technologyreview.com/blog/arxiv/26934/

**ZIEKTES**
**Hondenziektes**
Catherine O’Driscoll - *What vets don’t tell you about vaccines* blz. 135 en verder
Craig E. Greene - *Infectious Diseases of the dog and cat*, blz 25-41, 47-53, 1109, 1121, 1123 en 1151
http://dier-en-natuur.infonu.nl
http://home.telfort.nl/sp801235/Honden/Ziekten/FranseTeek/franseteek.htm
http://labradornet.com
http://nl.wikipedia.org/wiki
http://www.behendigehuishond.nl
http://www.beroepsziekten.nl
http://www.causus.be
Kattenziekten
Craig E. Greene- *Infectious Diseases of the dog and cat*, blz 91-94, 97, 105-131
http://kattenziektes.com
http://http://www.dierenkliniekwilhelminapark.nl
http://http://www.daphorst.nl
http://http://www.dapmarum.nl
http://http://www.dierenkliniekdetoren.nl
http://http://www.dierenklinieklemmer.nl
http://http://www.dierenkliniekwilhelminapark.nl
http://http://www.felissana.nl
http://http://www.kattenplaza.nl
http://http://www.whgdierenartsen.nl

Paardenziekten
Pavord, Tony; Pavord, Marcy: Handboek Paardenziekten in woord en beeld. Veltman Uitgevers. 2006.
http://nl.wikipedia.org/wiki
http://http://www.boehringer-ingelheim.nl
http://http://www.cvi.wur.nl
http://http://www.daphorst.nl
http://http://www.dapmoergestel.nl
http://http://www.dierenklinieklemmer.nl
http://http://www.gezondheid.be
http://http://www.gezondheidvanmijnpaard.nl
http://http://www.horses.nl
VACCINEREN en VACCINS ALGEMEEN


Böhm, M.; Thompson, H.; Weir, A.; Hasted, A.M.; Maxwell, N.S.; Herrtage, M.E.: Serum antibody titres to canine parvovirus, adenovirus and distemper virus in dogs in the UK which had not been vaccinated for at least three years. Veterinary Record (2004) 154, 457-463.


Gore, T. C.; Lakshmanan, N.; Duncan, K. L.; Coyne, M. J.; Lum, M. A.; and Sterner, F. J. (Intervet): Three-Year Duration of Immunity in Dogs Following Vaccination Against Canine Adenovirus Type-1, Canine Parvovirus, and Canine Distemper Virus. Veterinary Therapeutics, Vol. 6, No. 1, Spring 2005.


Three year duration of immunity in dogs following vaccination against canine adenovirus type-1, canine parvovirus, and canine distemper virus. Veterinary Therapeutics, Vol. 6, No. 1, Spring 2005.


http://www.instapendraf.nl
http://www.keerhoeve.nl
http://www.merial.nl/equine/disease/influenza.asp
http://www.paardenacademie.nl

ADJUVANTIA EN HULPSTOFFEN


http://en.wikipedia.org/wiki
http://home.kpn.nl/b1beukema/immunsysteem.html
http://impfschaden-ms.de/media/d91ee03b6b46c3def881befffffff0.pdf
http://medical-dictionary.thefreedictionary.com
http://nl.wikipedia.org/wiki
http://home.kpn.nl/b1beukema/immunsysteem.html
http://impfschaden-ms.de/media/d91ee03b6b46c3def881befffffff0.pdf

**MATERIA MEDICA**

**Thuja**

http://hpathy.com/homeopathy-papers/homeopathic-alternatives-to-vaccines/
http://www.anthemis.nl/aroma/thuja.htm
http://www.emaeuropa.eu
http://www.kruijerhomeopathie.nl
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1062158
http://www.plantaardigheden.nl/plant/beschr/gonnve/westerse_levensboom.htm

Sulphur
http://environmentalchemistry.com/yogi/periodic/S.html
http://www.hvandervet.nl/pag12.html
http://www.vanderpigge.nl/route/29-organische-zwavel-msm
http://nl.wikipedia.org/wiki
http://www.lenntech.nl/periodiek/elementen/s.htm

Silicea
http://www.uitgeverijcyron.nl/pdf300_gutman.pdf
http://www.silicahorse.nl/?page_id=691
http://nl.wikipedia.org/wiki

Homeopathisch gedeelte (vaccins, onderzoeken)
http://flusolution.net/dewey.htm
hpathy.com/homeopathy-papers/vaccination-and-homeopathy/
hpathy.com/homeopathy-papers/vaccination-consequences/
hpathy.com/homeopathy-papers/vaccines-untested-unsafe-and-unnecessary/
http://www.alternativevet.org/articles_header.htm
http://www.alternativevet.org/research.htm
http://www.drpitcairn.com/homeopathic-alternatives-to-vaccines/
http://www.facultyofhomeopathy.org
http://www.nationalcenterforhomeopathy.org/content/testimony-of-great-homoeopaths-0
http://youtu.be/u0FCzOjZ0Gk Vaccinines Insight - Part 2 Dr. Patricia Jordan
http://youtu.be/w5J-6M2yeH8 Vaccinines Insight - Part 1 Dr. Patricia Jordan

Nosodes
http://www.homeopathie-info.com/nosode.htm
http://www.homeo-natura.nl/Nosoden.html
http://www.homeopathic.org/content/testimony-of-great-homoeopaths-0